Video super-resolution based on spatial-temporal recurrent residual networks

被引:43
|
作者
Yang, Wenhan [1 ]
Feng, Jiashi [2 ]
Xie, Guosen [3 ]
Liu, Jiaying [1 ]
Guo, Zongming [1 ]
Yan, Shuicheng [4 ]
机构
[1] Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
[4] Qihoo 360 Technol Co Ltd, Artificial Intelligence Inst, Beijing 100015, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatial residue; Temporal residue; Video super-resolution; Inter-frame motion context; Intra-frame redundancy; IMAGE SUPERRESOLUTION; ALGORITHM;
D O I
10.1016/j.cviu.2017.09.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new video Super-Resolution (SR) method by jointly modeling intra-frame redundancy and inter-frame motion context in a unified deep network. Different from conventional methods, the proposed Spatial-Temporal Recurrent Residual Network (STR-ResNet) investigates both spatial and temporal residues, which are represented by the difference between a high resolution (HR) frame and its corresponding low resolution (LR) frame and the difference between adjacent HR frames, respectively. This spatial-temporal residual learning model is then utilized to connect the intra-frame and inter-frame redundancies within video sequences in a recurrent convolutional network and to predict HR temporal residues in the penultimate layer as guidance to benefit estimating the spatial residue for video SR. Extensive experiments have demonstrated that the proposed STR-ResNet is able to efficiently reconstruct videos with diversified contents and complex motions, which outperforms the existing video SR approaches and offers new state-of-the-art performances on benchmark datasets.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 50 条
  • [21] Attention-guided video super-resolution with recurrent multi-scale spatial–temporal transformer
    Wei Sun
    Xianguang Kong
    Yanning Zhang
    Complex & Intelligent Systems, 2023, 9 : 3989 - 4002
  • [22] Space-time super-resolution for satellite video: A joint framework based on multi-scale spatial-temporal transformer
    Xiao, Yi
    Yuan, Qiangqiang
    He, Jiang
    Zhang, Qiang
    Sun, Jing
    Su, Xin
    Wu, Jialian
    Zhang, Liangpei
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
  • [23] Video Super-Resolution via Residual Learning
    Wang, Wenjun
    Ren, Chao
    He, Xiaohai
    Chen, Honggang
    Qing, Linbo
    IEEE ACCESS, 2018, 6 : 23767 - 23777
  • [24] Spatio-Temporal Adaptive Super-Resolution Reconstruction Model Based on Zernike Moment for Spatial Video Sequences
    Liang Meiyu
    Du Junping
    Lee, JangMyung
    Liu Honggang
    Zhang Yun
    CHINA COMMUNICATIONS, 2012, 9 (12) : 93 - 107
  • [25] An FPGA-Based Residual Recurrent Neural Network for Real-Time Video Super-Resolution
    Sun, Kaicong
    Koch, Maurice
    Wang, Zhe
    Jovanovic, Slavisa
    Rabah, Hassan
    Simon, Sven
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 1739 - 1750
  • [26] An Efficient and Lightweight Structure for Spatial-Temporal Feature Extraction in Video Super Resolution
    He, Xiaonan
    Xia, Yukun
    Qiao, Yuansong
    Lee, Brian
    Ye, Yuhang
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 362 - 374
  • [27] SELF-LEARNED VIDEO SUPER-RESOLUTION WITH AUGMENTED SPATIAL AND TEMPORAL CONTEXT
    Fan, Zejia
    Liu, Jiaying
    Yang, Wenhan
    Xiang, Wei
    Guo, Zongming
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1925 - 1929
  • [28] Self-Supervised Video Super-Resolution by Spatial Constraint and Temporal Fusion
    Yang, Cuixin
    Luo, Hongming
    Liao, Guangsen
    Lu, Zitao
    Zhou, Fei
    Qiu, Guoping
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 249 - 260
  • [29] VIDEO SUPER-RESOLUTION USING MOTION COMPENSATION AND RESIDUAL BIDIRECTIONAL RECURRENT CONVOLUTIONAL NETWORK
    Li, Dingyi
    Liu, Yu
    Wang, Zengfu
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1642 - 1646
  • [30] Progressive residual networks for image super-resolution
    Wan, Jin
    Yin, Hui
    Chong, Ai-Xin
    Liu, Zhi-Hao
    APPLIED INTELLIGENCE, 2020, 50 (05) : 1620 - 1632