Diffusion Models for Medical Anomaly Detection

被引:139
作者
Wolleb, Julia [1 ]
Bieder, Florentin [1 ]
Sandkuhler, Robin [1 ]
Cattin, Philippe C. [1 ]
机构
[1] Univ Basel, Dept Biomed Engn, Allschwil, Switzerland
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII | 2022年 / 13438卷
关键词
Anomaly detection; Diffusion models; Weak supervision;
D O I
10.1007/978-3-031-16452-1_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In medical applications, weakly supervised anomaly detection methods are of great interest, as only image-level annotations are required for training. Current anomaly detection methods mainly rely on generative adversarial networks or autoencoder models. Those models are often complicated to train or have difficulties to preserve fine details in the image. We present a novel weakly supervised anomaly detection method based on denoising diffusion implicit models. We combine the deterministic iterative noising and denoising scheme with classifier guidance for image-to-image translation between diseased and healthy subjects. Our method generates very detailed anomaly maps without the need for a complex training procedure. We evaluate our method on the BRATS2020 dataset for brain tumor detection and the CheXpert dataset for detecting pleural effusions.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 30 条
[1]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[2]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[3]  
Baranchuk Dmitry, 2022, P INT C LEARN REPR
[4]   Visual Feature Attribution using Wasserstein GANs [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Tezcan, Kerem Can ;
Ang, Jia Xi ;
Konukoglu, Ender .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8309-8319
[5]  
Chen XR, 2018, Arxiv, DOI arXiv:1806.04972
[6]   ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models [J].
Choi, Jooyoung ;
Kim, Sungwon ;
Jeong, Yonghyun ;
Gwon, Youngjune ;
Yoon, Sungroh .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :14347-14356
[7]  
Dhariwal P, 2021, ADV NEUR IN, V34
[8]  
Goodfellow I.J., 2020, ADV NEUR IN, V63, P139, DOI DOI 10.1145/3422622
[9]  
Ho J., 2020, PROC 34 INT C NEURAL, V574, P6840
[10]  
Irvin J, 2019, AAAI CONF ARTIF INTE, P590