Zeros of higher derivatives of meromorphic functions in the complex plane

被引:22
作者
Yamanoi, Katsutoshi [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
DEFICIENCY; DEFECT; MUES;
D O I
10.1112/plms/pds051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Gol'dberg conjecture, which states that the frequency of distinct poles of a meromorphic function f in the complex plane is governed by the frequency of zeros of the second derivative f '. As a consequence, we prove Mues' conjecture concerning the defect relation for the derivatives of meromorphic functions in the complex plane.
引用
收藏
页码:703 / 780
页数:78
相关论文
共 35 条
[1]   On the theory of superimposed surfaces [J].
Ahlfors, L .
ACTA MATHEMATICA, 1935, 65 (01) :157-194
[2]  
Ahlfors L., 2006, LECT QUASICONFORMAL
[3]  
[Anonymous], 1992, Grad. Texts in Math., DOI DOI 10.1007/978-1-4612-2034-3
[4]  
[Anonymous], 2009, Princeton Mathematical Series
[5]   HOLOMORPHIC FAMILIES OF INJECTIONS [J].
BERS, L ;
ROYDEN, HL .
ACTA MATHEMATICA, 1986, 157 (3-4) :259-286
[6]  
Bonfert-Taylor P, 2000, ANN ACAD SCI FENN-M, V25, P131
[7]   Bounds on spherical derivatives for maps into regions with symmetries [J].
Bonk, M ;
Cherry, W .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 69 :249-274
[8]  
BUSER P., 1992, Progr. Math., V106
[9]  
CHERRY W, 2001, SPRINGER MG MATH, pR5
[10]  
Drasin D., 1976, ACTA MATH-DJURSHOLM, V138, P83, DOI DOI 10.1007/BF02392314