Twin boundary-induced intrinsic strengthening in Ni

被引:3
作者
Barabash, R. I. [1 ]
Rollett, A. [2 ]
Lebensohn, R. A. [3 ]
Barabash, O. M. [4 ]
Liu, W. [5 ]
Pang, J. W. L. [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[4] Univ Tennessee, Knoxville, TN 37996 USA
[5] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
关键词
Twin boundaries; Grain boundaries; Strain field; X-ray diffraction; X-RAY MICRODIFFRACTION; DISLOCATIONS; STRAIN;
D O I
10.1016/j.tsf.2012.03.106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The manuscript presents a combined experimental/simulation study of the intrinsic strengthening of the material near twin boundaries. Polychromatic X-ray micro Laue diffraction together with electron backscattering diffraction shows that dislocation slippage is suppressed near the twin boundaries. Indentation demonstrates increased hardness in the immediate vicinity of the twin boundary. Distinct slip bands are observed in the interior of the macroscopic similar to 500 mu m thick twin. Fast oscillations of lattice rotations are found within each slip band. Crystal plasticity analysis using a spectral formulation finds a similar dependence of the plastic response of the matrix and the twin depending on their orientation and initial structural conditions. (C) 2012 Elsevier B. V. All rights reserved.
引用
收藏
页码:14 / 19
页数:6
相关论文
共 50 条
[31]   Misfit strain induced phase transformation at a basal/prismatic twin boundary in deformation of magnesium [J].
Chen, Peng ;
Wang, Fangxi ;
Li, Bin .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 164 :186-194
[32]   Intrinsic stacking fault energy and mechanism for deformation twin formation of solid solution matrix in Ni-based superalloys [J].
Chen, Jianjun ;
Ding, Yutian ;
Zhang, Xia ;
Gao, Yubi ;
Ma, Yuanjun .
VACUUM, 2022, 203
[33]   Strengthening mechanisms in Ni and Ni-5Fe alloy [J].
Agrawal, Shavi ;
Heilmaier, Martin ;
Skrotzki, Werner ;
Suwas, Satyam .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 924
[34]   Atomistic Insight into Grain Boundary Deformation Induced Strengthening in Layer-Grained Nanocrystalline Al [J].
Jing, Peng ;
Wang, Yu ;
Zhou, Yuankai ;
Shi, Wenchao .
LANGMUIR, 2023, 39 (28) :9963-9971
[35]   Twin thickness-dependent tensile deformation mechanism on strengthening-softening of Si nanowires [J].
Yimer, Mohammed Meaza ;
Wubeshet, Debela Abeyot ;
Qin, Xiangge .
HELIYON, 2023, 9 (05)
[36]   Analysis of Twin Boundary in Single Crystal of Ni-Mn-Ga Martensite Using Powder Laboratory Diffractometer [J].
Drahokoupil, Jan ;
Straka, Ladislav ;
Heczko, Oleg .
APPLIED CRYSTALLOGRAPHY XXII, 2013, 203-204 :13-+
[37]   A discrete twin-boundary approach for simulating the magneto-mechanical response of Ni-Mn-Ga [J].
Faran, Eilon ;
Shilo, Doron .
SMART MATERIALS AND STRUCTURES, 2016, 25 (09)
[38]   Twin boundary reversibility characteristics in α-Fe [J].
Veerababu, J. ;
Sainath, G. ;
Nagesha, A. .
MATERIALS TODAY COMMUNICATIONS, 2021, 29
[39]   Basal stacking fault induced twin boundary gliding, twinning disconnection and twin growth in hcp Ti from the first-principles [J].
Qian, Qi ;
Liu, Zheng-qing ;
Jiang, Yong ;
Wang, Yi-ren ;
An, Xing-long ;
Song, Min .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2021, 31 (02) :382-390
[40]   Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary [J].
Li, L. L. ;
Zhang, Z. J. ;
Zhang, P. ;
Wang, Z. G. ;
Zhang, Z. F. .
NATURE COMMUNICATIONS, 2014, 5