The minimal eigenvalues of a class of block-tridiagonal matrices

被引:7
作者
Lu, LZ [1 ]
Sun, W [1 ]
机构
[1] CITY UNIV HONG KONG,DEPT MATH,KOWLOON,HONG KONG
关键词
minimal eigenvalues; block-tridiagonal matrices;
D O I
10.1109/18.556141
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, we study the minimal eigenvalues of a class of block-tridiagonal matrices from telecommunication system analysis. We present an eigenvalue analysis for two-user systems and efficient estimates for m-user systems.
引用
收藏
页码:787 / 791
页数:5
相关论文
共 6 条
[1]   BOUNDS ON THE EXTREME EIGENVALUES OF POSITIVE-DEFINITE TOEPLITZ MATRICES [J].
DEMBO, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (02) :352-355
[2]   NEAR FAR RESISTANCE OF MULTIUSER DETECTORS IN ASYNCHRONOUS CHANNELS [J].
LUPAS, R ;
VERDU, S .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1990, 38 (04) :496-508
[3]   LINEAR MULTIUSER DETECTORS FOR SYNCHRONOUS CODE-DIVISION MULTIPLE-ACCESS CHANNELS [J].
LUPAS, R ;
VERDU, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) :123-136
[4]   ON LOWER BOUNDS FOR THE SMALLEST EIGENVALUE OF A HERMITIAN POSITIVE-DEFINITE MATRIX [J].
MA, EM ;
ZAROWSKI, CJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :539-540
[5]  
PARLETT BN, 1980, SYMMETRIC EIGENVALUE
[6]   METHODS OF CYCLIC REDUCTION, FOURIER-ANALYSIS AND FACR ALGORITHM FOR DISCRETE SOLUTION OF POISSONS EQUATION ON A RECTANGLE [J].
SWARZTRAUBER, PN .
SIAM REVIEW, 1977, 19 (03) :490-501