Crank-Nicolson difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative

被引:170
|
作者
Wang, Dongling [1 ]
Xiao, Aiguo [1 ]
Yang, Wei [1 ]
机构
[1] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
关键词
Fractional Schrodinger equation; Crank-Nicolson scheme; Fractional centered difference; DIFFUSION EQUATION; NUMERICAL-METHODS; CONVERGENCE;
D O I
10.1016/j.jcp.2013.02.037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the Crank-Nicolson (CN) difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative is studied. The existence of this difference solution is proved by the Brouwer fixed point theorem. The stability and convergence of the CN scheme are discussed in the L-2 norm. When the fractional order is two, all those results are in accord with the difference scheme developed for the classical non-fractional coupled nonlinear Schrodinger equations. Some numerical examples are also presented. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:670 / 681
页数:12
相关论文
共 50 条
  • [21] Crank-Nicolson finite difference method for time-fractional coupled KdV equation
    Kawala, A. M.
    Abdelaziz, H. K.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (12) : 2564 - 2575
  • [22] Numerical Analysis of Fully Discretized Crank-Nicolson Scheme for Fractional-in-Space Allen-Cahn Equations
    Hou, Tianliang
    Tang, Tao
    Yang, Jiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (03) : 1214 - 1231
  • [23] A Conservative Crank-Nicolson Fourier Spectral Method for the Space Fractional Schrodinger Equation with Wave Operators
    Zhang, Lei
    Yang, Rui
    Zhang, Li
    Wang, Lisha
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [24] A CRANK-NICOLSON ADI SPECTRAL METHOD FOR A TWO-DIMENSIONAL RIESZ SPACE FRACTIONAL NONLINEAR REACTION-DIFFUSION EQUATION
    Zeng, Fanhai
    Liu, Fawang
    Li, Changpin
    Burrage, Kevin
    Turner, Ian
    Anh, V.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 2599 - 2622
  • [25] Stability and convergence of a Crank-Nicolson finite volume method for space fractional diffusion equations
    Fu, Hongfei
    Sun, Yanan
    Wang, Hong
    Zheng, Xiangcheng
    APPLIED NUMERICAL MATHEMATICS, 2019, 139 : 38 - 51
  • [26] Exponential time differencing Crank-Nicolson method with a quartic spline approximation for nonlinear Schrodinger equations
    Liang, Xiao
    Khaliq, Abdul Q. M.
    Sheng, Qin
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 : 235 - 252
  • [27] A Crank-Nicolson linear difference scheme for a BBM equation with a time fractional nonlocal viscous term
    Shen, Xue
    Zhu, Ailing
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [28] CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
    冯新龙
    何银年
    Acta Mathematica Scientia, 2016, 36 (01) : 124 - 138
  • [29] CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
    Feng, Xinlong
    He, Yinnian
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (01) : 124 - 138
  • [30] A POSTERIORI ERROR ANALYSIS FOR THE CRANK-NICOLSON METHOD FOR LINEAR SCHRODINGER EQUATIONS
    Kyza, Irene
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (04): : 761 - 778