Crank-Nicolson difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative

被引:175
作者
Wang, Dongling [1 ]
Xiao, Aiguo [1 ]
Yang, Wei [1 ]
机构
[1] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
关键词
Fractional Schrodinger equation; Crank-Nicolson scheme; Fractional centered difference; DIFFUSION EQUATION; NUMERICAL-METHODS; CONVERGENCE;
D O I
10.1016/j.jcp.2013.02.037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the Crank-Nicolson (CN) difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative is studied. The existence of this difference solution is proved by the Brouwer fixed point theorem. The stability and convergence of the CN scheme are discussed in the L-2 norm. When the fractional order is two, all those results are in accord with the difference scheme developed for the classical non-fractional coupled nonlinear Schrodinger equations. Some numerical examples are also presented. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:670 / 681
页数:12
相关论文
共 32 条
[11]   The global solution for a class of systems of fractional nonlinear Schrodinger equations with periodic boundary condition [J].
Hu, Jiaqian ;
Xin, Jie ;
Lu, Hong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1510-1521
[12]  
Ilic M., 2005, I. Fract. Calc. Appl. Anal, V8, P323
[13]   A fourth-order explicit schemes for the coupled nonlinear Schrodinger equation [J].
Ismail, M. S. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) :273-284
[14]   On convergence and stability of the explicit difference method for solution of nonlinear Schrodinger equations [J].
Ivanauskas, F ;
Radziunas, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1466-1481
[15]   Fractional quantum mechanics [J].
Laskin, N .
PHYSICAL REVIEW E, 2000, 62 (03) :3135-3145
[16]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[17]   Coupled nonlinear Schrodinger equations in optic fibers theory [J].
Leble, S. ;
Reichel, B. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 173 :5-55
[18]  
Ortigueira M. D., 2006, In- ternational Journal of Mathematics and Mathematical Sciences, V2006, P1, DOI DOI 10.1155/IJMMS/2006/48391
[19]   A novel numerical approximation for the space fractional advection-dispersion equation [J].
Shen, S. ;
Liu, F. ;
Anh, V. ;
Turner, I. ;
Chen, J. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2014, 79 (03) :431-444
[20]   The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation [J].
Shen, S. ;
Liu, F. ;
Anh, V. ;
Turner, I. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2008, 73 (06) :850-872