Crank-Nicolson difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative

被引:175
作者
Wang, Dongling [1 ]
Xiao, Aiguo [1 ]
Yang, Wei [1 ]
机构
[1] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
关键词
Fractional Schrodinger equation; Crank-Nicolson scheme; Fractional centered difference; DIFFUSION EQUATION; NUMERICAL-METHODS; CONVERGENCE;
D O I
10.1016/j.jcp.2013.02.037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the Crank-Nicolson (CN) difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative is studied. The existence of this difference solution is proved by the Brouwer fixed point theorem. The stability and convergence of the CN scheme are discussed in the L-2 norm. When the fractional order is two, all those results are in accord with the difference scheme developed for the classical non-fractional coupled nonlinear Schrodinger equations. Some numerical examples are also presented. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:670 / 681
页数:12
相关论文
共 32 条
[1]   Collocation method for fractional quantum mechanics [J].
Amore, Paolo ;
Fernandez, Francisco M. ;
Hofmann, Christoph P. ;
Saenz, Ricardo A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 1999, APPL FRACTIONAL CALC
[4]   Multi-symplectic integration of coupled non-linear Schrodinger system with soliton solutions [J].
Aydin, Ayhan ;
Karasoezen, Buelent .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (05) :864-882
[5]   An explicit unconditionally stable numerical method for solving damped nonlinear Schrodinger equations with a focusing nonlinearity [J].
Bao, WZ ;
Jaksch, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) :1406-1426
[6]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[7]   Fractional optical solitons [J].
Fujioka, J. ;
Espinosa, A. ;
Rodriguez, R. F. .
PHYSICS LETTERS A, 2010, 374 (09) :1126-1134
[8]   Nonlinear Schrodinger Equations and Their Spectral Semi-Discretizations Over Long Times [J].
Gauckler, Ludwig ;
Lubich, Christian .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (02) :141-169
[9]   Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrodinger equation [J].
Guo Boling ;
Han Yongqian ;
Xin Jie .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) :468-477
[10]   Some physical applications of fractional Schrodinger equation [J].
Guo, Xiaoyi ;
Xu, Mingyu .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)