Characterizing powder materials using keypoint-based computer vision methods

被引:44
作者
DeCost, Brian L. [1 ]
Holm, Elizabeth A. [1 ]
机构
[1] Carnegie Mellon Univ, Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Powder materials; Computer vision; Machine learning; Image data; Feature extraction; IMAGE; CLASSIFICATION; TI-6AL-4V; FEATURES; TEXTURE;
D O I
10.1016/j.commatsci.2016.08.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We applied the bag of visual words model for visual texture to a dataset of realistic powder micrograph images drawn from eight closely related particle size distributions. We found that image texture based powder classification performance saturates at 89 +/- 3% with 640 training images (80 images per class). This classification accuracy is comparable to classification using conventional segmentation-based particle size analysis. Furthermore, we found that particle size distributions obtained via watershed segmentation are generally not statistically equivalent to the ground truth particle size distributions, as quantified by the two-sample Kolmogorov-Smirnov test for distribution equivalence. We expect image texture classification methods to outperform particle size analysis for more challenging real-world powder classification tasks by capturing additional information about particle morphology and surface textures, which add complexity to the image segmentation task inherent in particle size distribution estimation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:438 / 445
页数:8
相关论文
共 48 条
  • [41] Characterization and Control of Powder Properties for Additive Manufacturing
    Strondl, A.
    Lyckfeldt, O.
    Brodin, H.
    Ackelid, U.
    [J]. JOM, 2015, 67 (03) : 549 - 554
  • [42] Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting
    Tang, H. P.
    Qian, M.
    Liu, N.
    Zhang, X. Z.
    Yang, G. Y.
    Wang, J.
    [J]. JOM, 2015, 67 (03) : 555 - 563
  • [43] Thorndike RL., 1953, PSYCHOMETRIKA, V18, P267, DOI [10.1007/BF02289263, 10.1007/bf02289263, DOI 10.1007/BF02289263]
  • [44] Powder deposition in selective metal powder sintering
    Van der Schueren, B.
    Kruth, J. P.
    [J]. RAPID PROTOTYPING JOURNAL, 1995, 1 (03) : 23 - 31
  • [45] A Statistical Approach to Material Classification Using Image Patch Exemplars
    Varma, Manik
    Zisserman, Andrew
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (11) : 2032 - 2047
  • [46] A Machine Learning-Based Design Representation Method for Designing Heterogeneous Microstructures
    Xu, Hongyi
    Liu, Ruoqian
    Choudhary, Alok
    Chen, Wei
    [J]. JOURNAL OF MECHANICAL DESIGN, 2015, 137 (05)
  • [47] Local features and kernels for classification of texture and object categories: A comprehensive study
    Zhang, J.
    Marszalek, M.
    Lazebnik, S.
    Schmid, C.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 73 (02) : 213 - 238
  • [48] The influence of powder apparent density on the density in direct laser-sintered metallic parts
    Zhu, H. H.
    Fuh, J. Y. H.
    Lu, L.
    [J]. INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2007, 47 (02) : 294 - 298