Characterizing powder materials using keypoint-based computer vision methods

被引:44
作者
DeCost, Brian L. [1 ]
Holm, Elizabeth A. [1 ]
机构
[1] Carnegie Mellon Univ, Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Powder materials; Computer vision; Machine learning; Image data; Feature extraction; IMAGE; CLASSIFICATION; TI-6AL-4V; FEATURES; TEXTURE;
D O I
10.1016/j.commatsci.2016.08.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We applied the bag of visual words model for visual texture to a dataset of realistic powder micrograph images drawn from eight closely related particle size distributions. We found that image texture based powder classification performance saturates at 89 +/- 3% with 640 training images (80 images per class). This classification accuracy is comparable to classification using conventional segmentation-based particle size analysis. Furthermore, we found that particle size distributions obtained via watershed segmentation are generally not statistically equivalent to the ground truth particle size distributions, as quantified by the two-sample Kolmogorov-Smirnov test for distribution equivalence. We expect image texture classification methods to outperform particle size analysis for more challenging real-world powder classification tasks by capturing additional information about particle morphology and surface textures, which add complexity to the image segmentation task inherent in particle size distribution estimation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:438 / 445
页数:8
相关论文
共 48 条
  • [31] Rublee E, 2011, IEEE I CONF COMP VIS, P2564, DOI 10.1109/ICCV.2011.6126544
  • [32] Modeling the spatial layout of images beyond spatial pyramids
    Sanchez, Jorge
    Perronnin, Florent
    de Campos, Teofilo
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (16) : 2216 - 2223
  • [33] NIH Image to ImageJ: 25 years of image analysis
    Schneider, Caroline A.
    Rasband, Wayne S.
    Eliceiri, Kevin W.
    [J]. NATURE METHODS, 2012, 9 (07) : 671 - 675
  • [34] Scholkopf B., 2002, LEARNING KERNELS SUP
  • [35] Investigation of aging processes of Ti-6Al-4V powder material in laser melting
    Seyda, V.
    Kaufmann, N.
    Emmelmann, C.
    [J]. LASER ASSISTED NET SHAPE ENGINEERING 7 (LANE 2012), 2012, 39 : 425 - 431
  • [36] The role of particle size on the laser sintering of iron powder
    Simchi, A
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2004, 35 (05): : 937 - 948
  • [37] Characterization of Metal Powders Used for Additive Manufacturing
    Slotwinski, J. A.
    Garboczi, E. J.
    Stutzman, P. E.
    Ferraris, C. F.
    Watson, S. S.
    Peltz, M. A.
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2014, 119 : 460 - 493
  • [38] Metrology Needs for Metal Additive Manufacturing Powders
    Slotwinski, John A.
    Garboczi, Edward J.
    [J]. JOM, 2015, 67 (03) : 538 - 543
  • [39] SOILLE P, 1990, P SOC PHOTO-OPT INS, V1360, P240, DOI 10.1117/12.24211
  • [40] K-means clustering:: A half-century synthesis
    Steinley, Douglas
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2006, 59 : 1 - 34