Adaptive decentralized PID controllers design using JITL modeling methodology

被引:17
作者
Yang, Xin [1 ]
Jia, Li [2 ]
Chiu, Min-Sen [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
[2] Shanghai Univ, Coll Mechatron Engn & Automat, Dept Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai 200072, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Decentralized PID controller; Lyapunov method; Multivariable systems; Just-in-Time Learning; NONLINEAR PROCESS-CONTROL; LYAPUNOV APPROACH; NEURAL-NETWORKS; SYSTEMS; REACTOR; IDENTIFICATION; PLANT;
D O I
10.1016/j.jprocont.2012.05.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an adaptive decentralized PID design is developed for multivariable systems. In the proposed design, the controller parameters are adjusted by an updating algorithm derived based on the Lyapunov method such that the predicted tracking error converges asymptotically. Toward this end, the Just-in-Time Learning method is incorporated into the proposed design to provide the information required for the updating algorithm. Simulation results illustrate that the proposed design achieves better control performance than its corresponding benchmark designs reported in the literature. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1531 / 1542
页数:12
相关论文
共 50 条
[21]   Decentralized Adaptive Neural Network Sliding Mode Control for Reconfigurable Manipulators with Data-based Modeling [J].
Li, Yuanchun ;
Ding, Guibin ;
Zhao, Bo ;
Dong, Bo ;
Liu, Guangjun .
2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, :595-602
[22]   Genetic Tuning of PID Controllers Using a Neural Network Model: A Seesaw Example [J].
Chia-Ju Wu .
Journal of Intelligent and Robotic Systems, 1999, 25 :43-59
[23]   Decentralized PID controller design for TITO processes with experimental validation [J].
Hajare V.D. ;
Patre B.M. ;
Khandekar A.A. ;
Malwatkar G.M. .
International Journal of Dynamics and Control, 2017, 5 (3) :583-595
[24]   Adaptive Output Feedback Design Using Asymptotic Properties of LQG/LTR Controllers [J].
Lavretsky, Eugene .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (06) :1587-1591
[25]   Neural Adaptive PID Control of a Quadrotor using EFK [J].
Rosales, C. ;
Tosetti, S. ;
Soria, C. ;
Rossomando, F. .
IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (11) :2722-2730
[26]   ADAPTIVE DIRECT DATA DRIVEN DESIGN FOR TWO DEGREES OF FREEDOM CONTROLLERS [J].
Dong, Liushuan ;
Wang, Jianhong .
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2022, 18 (03) :783-800
[27]   An islanded hybrid microgrid design with decentralized DC and AC subgrid controllers [J].
Kabalci, Ersan .
ENERGY, 2018, 153 :185-199
[28]   Design of PID controllers using Filippov's method for stable operation of DC-DC converters [J].
Hayes, Brendan ;
Condon, Marissa ;
Giaouris, Damian .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2016, 44 (07) :1437-1454
[30]   Performance of robust PID and Q-design controllers for propofol anesthesia [J].
van Heusden, K. ;
Ansermino, J. M. ;
Dumont, G. A. .
IFAC PAPERSONLINE, 2018, 51 (04) :78-83