The fractional-order modeling and synchronization of electrically coupled neuron systems

被引:103
作者
Moaddy, K. [2 ]
Radwan, A. G. [1 ,3 ]
Salama, K. N. [1 ]
Momani, S. [4 ]
Hashim, I. [2 ]
机构
[1] KAUST, Dept Elect Engn, Thuwal, Saudi Arabia
[2] Univ Kebangsaan Malaysia, Sch Math Sci, Ukm Bangi 43600, Selangor, Malaysia
[3] Cairo Univ, Fac Engn, Dept Engn Math, Cairo, Egypt
[4] Univ Jordan, Dept Math, Amman 11942, Jordan
关键词
Non-standard Finite deference scheme; Fractional differential equation; Chaotic synchronization; Neuron system; EQUATIONS;
D O I
10.1016/j.camwa.2012.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize the integer-order cable model of the neuron system into the fractional-order domain, where the long memory dependence of the fractional derivative can be a better fit for the neuron response. Furthermore, the chaotic synchronization with a gap junction of two or multi-coupled-neurons of fractional-order are discussed. The circuit model, fractional-order state equations and the numerical technique are introduced in this paper for individual and multiple coupled neuron systems with different fractional-orders. Various examples are introduced with different fractional orders using the nonstandard finite difference scheme together with the Grunwald-Letnikov discretization process which is easily implemented and reliably accurate. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3329 / 3339
页数:11
相关论文
共 33 条
[1]   Solving systems of fractional differential equations by homotopy-perturbation method [J].
Abdulaziz, O. ;
Hashim, I. ;
Momani, S. .
PHYSICS LETTERS A, 2008, 372 (04) :451-459
[2]  
[Anonymous], 2000, APPL NONSTANDARD FIN
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   Nonlinear oscillations of the FitzHugh-Nagumo equations under combined external and two-frequency parametric excitations [J].
Bemmo, D. Tatchim ;
Siewe, M. Siewe ;
Tchawoua, C. .
PHYSICS LETTERS A, 2011, 375 (19) :1944-1953
[5]   Synchronization of different fractional order chaotic systems using active control [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3536-3546
[6]   Chaotic synchronization with gap junction of multi-neurons in external electrical stimulation [J].
Deng, B ;
Wang, J ;
Fei, XY .
CHAOS SOLITONS & FRACTALS, 2005, 25 (05) :1185-1192
[7]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[8]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[9]   Phase synchronization in fractional differential chaotic systems [J].
Erjaee, G. H. ;
Momani, Shaher .
PHYSICS LETTERS A, 2008, 372 (14) :2350-2354
[10]   An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension [J].
Haba, T. Cisse ;
Loum, Georges L. ;
Ablart, G. .
CHAOS SOLITONS & FRACTALS, 2007, 33 (02) :364-373