Shellability of interval orders

被引:9
作者
Billera, LJ
Myers, AN
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Dartmouth Coll, Hanover, NH 03755 USA
[3] Math Sci Res Inst, Berkeley, CA 94720 USA
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 1998年 / 15卷 / 02期
关键词
interval order; order complex; partially ordered set; poset; shellability;
D O I
10.1023/A:1006196114698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An finite interval order is a partially ordered set whose elements are in correspondence with a finite set of intervals in the line, with disjoint intervals being ordered by their relative position. We show that any such order is shellable in the sense that its (not necessarily pure) order complex is shellable.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1996, Combinatorics and commutative algebra
[2]   GENERALIZED DEHN-SOMMERVILLE RELATIONS FOR POLYTOPES, SPHERES AND EULERIAN PARTIALLY ORDERED SETS [J].
BAYER, MM ;
BILLERA, LJ .
INVENTIONES MATHEMATICAE, 1985, 79 (01) :143-157
[3]  
BILLERA LJ, 1998, MATH ESSAYS HONOR GC
[4]   ON LEXICOGRAPHICALLY SHELLABLE POSETS [J].
BJORNER, A ;
WACHS, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :323-341
[5]   Shellable nonpure complexes and posets .2. [J].
Bjorner, A ;
Wachs, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :3945-3975
[6]   Shellable nonpure complexes and posets .1. [J].
Bjorner, A ;
Wachs, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (04) :1299-1327
[7]  
Fishburn PC., 1985, INTERVAL ORDERS INTE, pxi+215
[8]  
Stanley R. P., 1986, ENUMERATIVE COMBINAT
[9]  
Trotter W.T., 1992, COMBINATORICS PARTIA
[10]  
WACHS ML, IN PRESS DISCRETE CO