Explicit solutions of the generalized KdV equations with higher order nonlinearity

被引:15
作者
Liu, XQ [1 ]
Chen, HL
Lü, YQ
机构
[1] Liaocheng Univ, Sch Math Sci, Shandong 252059, Peoples R China
[2] SW Univ Sci & Technol, Coll Math & Phys, Mianyang 621000, Sichuan, Peoples R China
[3] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词
the generalized KdV equations; peaked solitary wave; explicit solutions;
D O I
10.1016/j.amc.2005.01.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing auxiliary functions and equations, we find some new explicit solutions of the generalized KdV equations with higher order nonlinearity. In particular, we get the peaked solitary wave Solutions of the generalized KdV equations. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:315 / 319
页数:5
相关论文
共 8 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   SOLITONS IN THE CAMASSA-HOLM SHALLOW-WATER EQUATION [J].
COOPER, F ;
SHEPARD, H .
PHYSICS LETTERS A, 1994, 194 (04) :246-250
[3]   DOMAIN-WALL SOLUTIONS OF KDV LIKE EQUATIONS WITH HIGHER-ORDER NONLINEARITY [J].
DEY, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (01) :L9-L12
[4]  
Dey B., 1988, KDV EQUATIONS DOMAIN, P188
[5]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[6]   THE RELATIONS AMONG A SPECIAL TYPE OF SOLUTIONS IN SOME (D+1)-DIMENSIONAL NONLINEAR EQUATIONS [J].
LOU, SY ;
NI, GJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) :1614-1620
[7]   Auxiliary equation method for solving nonlinear partial differential equations [J].
Sirendaoreji ;
Sun, J .
PHYSICS LETTERS A, 2003, 309 (5-6) :387-396
[8]  
唐民英, 2002, [中国科学. A辑, 数学, Science in China], V32, P398