Multiplicity of localized solutions of nonlinear Schrodinger systems for infinite attractive case

被引:2
作者
Chang, Xiaojun [1 ,2 ]
Sato, Yohei [3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
[3] Saitama Univ, Dept Math, Sakura Ku, Shimo Okubo 255, Saitama 3388570, Japan
关键词
Nonlinear Schrodinger system; Variational method; Singular perturbation problem; Infinite attractive force; POSITIVE SOLUTIONS; MOUNTAIN PASS; EQUATIONS; SPIKES;
D O I
10.1016/j.jmaa.2020.124358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear Schrodinger system: {- epsilon(2)Delta u + V-1(x)u = uv(2) in R-N, u is an element of H-1 (R-N), - epsilon(2)Delta v + V-2(x)v = u(2)v in R-N, v is an element of H-1 (R-N), where N <= 3, epsilon is an element of (0, 1), V-i is an element of C-1 (R-N, R), 0 < inf(x is an element of RN) V-i(x) <= sup(x is an element of RN) V-i(x) < infinity (i = 1,2), and there exists a bounded open set A C RN with smooth boundary partial derivative Lambda such that inf(x is an element of partial derivative Lambda) min {partial derivative V-1/partial derivative nu (x), partial derivative V-2/partial derivative nu (x)} > 0. We prove the existence of a given number of semi-positive solutions localized in Lambda. Here we say (u, v) is semi-positive, if either u > 0 or v > 0. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 24 条
  • [1] Local mountain pass for a class of elliptic system
    Alves, Claudianor O.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) : 135 - 150
  • [2] MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC SYSTEMS VIA LOCAL MOUNTAIN PASS METHOD
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Furtado, Marcelo F.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (06) : 1745 - 1758
  • [3] Existence and concentration of positive solutions for a class of gradient systems
    Alves, CO
    Soares, SHM
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, 12 (04): : 437 - 457
  • [4] Ambrosetti A., 2007, CAMBRIDGE STUDIES AD, V104
  • [5] Multiplicity of solutions for fractional Schrodinger systems in Double-struck capital RN
    Ambrosio, Vincenzo
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (05) : 856 - 885
  • [6] Multiplicity and concentration of solutions for fractional Schrodinger systems via penalization method
    Ambrosio, Vincenzo
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (03) : 543 - 581
  • [7] CONCENTRATION PHENOMENA FOR CRITICAL FRACTIONAL SCHRODINGER SYSTEMS
    Ambrosio, Vincenzo
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) : 2085 - 2123
  • [8] Pattern formation via mixed attractive and repulsive interactions for nonlinear Schrodinger systems
    Byeon, Jaeyoung
    Sato, Yohei
    Wang, Zhi-Qiang
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (03): : 477 - 511
  • [9] Positive solutions for a class of elliptic systems with singular potentials
    Carriao, P. C.
    Lisboa, N. H.
    Miyagaki, O. H.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (02): : 317 - 339
  • [10] Infinitely many bound states for some nonlinear scalar field equations
    Cerami, G
    Devillanova, G
    Solimini, S
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (02) : 139 - 168