A Radar Signal Sorting Algorithm Based on Improved k-means Dynamic Clustering and Sub Linear Time Algorithm

被引:0
|
作者
Gao Li-peng [1 ]
Shan Hui-yu [1 ]
Ji Feng-you [1 ]
机构
[1] Harbin Engn Univ, Informat Technol Res Inst, Harbin, Heilongjiang, Peoples R China
关键词
signal sorting; k-means; dynamic clustering; sublinear time algorithm;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to meet the need of real time, electromagnetic environment became more and more complex and increasing signal flow density, a radar signal sorting algorithm based on improved k-means dynamic clustering and sub linear time algorithm is presented. The amount of calculation with computing time and the number of clustering iterations is decreasing sharply via setting clustering termination conditions. Aiming at resolving the disadvantages, which clustering can hardly show all the parameters of radar especially pulse repetition interval sub linear time algorithm, one of the common algorithm of big data is referenced. Firstly, each coming pulse description word is classified by clustering and stop when it reaches the termination conditions. Then the classified sequences are analyzed to find out the pulse repetition interval by sub linear time algorithm after the clustering per 100 ms. Finally, comprehensive radar parameters are searched and the signal is sorted. Experimental results show how the proposed algorithm is applicable and effective to sort signal and satisfy the real time with less calculation and higher accuracy.
引用
收藏
页码:942 / 946
页数:5
相关论文
共 50 条
  • [1] Radar Signal Sorting Algorithm of K-Means Clustering based on Data Field
    Feng, Xin
    Hu, Xiaoxi
    Liu, Yang
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2262 - 2266
  • [2] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67
  • [3] A Clustering K-means Algorithm Based on Improved PSO Algorithm
    Tan, Long
    2015 FIFTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT2015), 2015, : 940 - 944
  • [4] An Improved K-means Clustering Algorithm
    Wang Yintong
    Li Wanlong
    Gao Rujia
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [5] Improved K-means clustering algorithm
    Zhang, Zhe
    Zhang, Junxi
    Xue, Huifeng
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 5, PROCEEDINGS, 2008, : 169 - 172
  • [6] An improved K-means clustering algorithm
    Huang, Xiuchang
    Su, Wei
    Journal of Networks, 2014, 9 (01) : 161 - 167
  • [7] Improved Algorithm for the k-means Clustering
    Zhang, Sheng
    Wang, Shouqiang
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4717 - 4720
  • [8] An Improved K-means Clustering Algorithm Based on Dissimilarity
    Wang Shunye
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 2629 - 2633
  • [9] A K-means Optimized Clustering Algorithm Based on Improved Genetic Algorithm
    Pu, Qiu-Mei
    Wu, Qiong
    Li, Qian
    Lecture Notes in Electrical Engineering, 2022, 801 LNEE : 133 - 140
  • [10] A Nonuniform Clustering Routing Algorithm Based on an Improved K-Means Algorithm
    Tang, Xinliang
    Zhang, Man
    Yu, Pingping
    Liu, Wei
    Cao, Ning
    Xu, Yunfeng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (03): : 1725 - 1739