Universal elements for non-linear operators and their applications

被引:27
作者
Shkarin, Stanislav [1 ]
机构
[1] Queens Univ Belfast, Dept Pure Math, Belfast BT7 1NN, Antrim, North Ireland
关键词
cyclic operators; hypercyclic operators; supercyclic operators; universal families;
D O I
10.1016/j.jmaa.2008.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that under certain topological conditions on the set of universal elements of a continuous map T acting on a topological space X, that the direct sum T circle plus M-g is universal, where Mg is multiplication by a generating element of a compact topological group. We use this result to characterize R+-supercyclic operators and to show that whenever T is a supercyclic operator and z(1) ,..., z(n) are pairwise different non-zero complex numbers, then the operator z(1) T circle plus ... circle plus z(n) T is cyclic. The latter answers affirmatively a question of Bayart and Matheron. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 24 条
[1]   HYPERCYCLIC AND CYCLIC VECTORS [J].
ANSARI, SI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (02) :374-383
[2]   Hyponormal operators, weighted shifts and weak forms of supercyclicity [J].
Bayart, F ;
Matheron, E .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2006, 49 :1-15
[3]   Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces [J].
Bermúdez, T ;
Bonilla, A ;
Conejero, JA ;
Peris, A .
STUDIA MATHEMATICA, 2005, 170 (01) :57-75
[4]   C-supercyclic versus R+-supercyclic operators [J].
Bermúdez, T ;
Bonilla, A ;
Peris, A .
ARCHIV DER MATHEMATIK, 2002, 79 (02) :125-130
[5]   Hereditarily hypercyclic operators [J].
Bès, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :94-112
[6]   Some properties of N-supercyclic operators [J].
Bourdon, PS ;
Feldman, NS ;
Shapiro, JH .
STUDIA MATHEMATICA, 2004, 165 (02) :135-157
[7]   Hypercyclic behaviour of operators in a hypercyclic C0-semigroup [J].
Conejero, Jose A. ;
Muller, V. ;
Peris, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) :342-348
[8]  
Engelking R., 1989, SIGMA SER PURE MATH, V6
[9]   n-supercyclic operators [J].
Feldman, NS .
STUDIA MATHEMATICA, 2002, 151 (02) :141-159
[10]   STRUCTURE OF DISTAL FLOWS [J].
FURSTENBERG, H .
AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (03) :477-&