An Inverse Problem of Identifying Two Unknown Parameters in Parabolic Differential Equations

被引:3
作者
Shekarpaz, S. [1 ]
Azari, H. [1 ]
机构
[1] Shahid Beheshti Univ, Dept Appl Math, Fac Math Sci, Tehran, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2018年 / 42卷 / A4期
关键词
Inverse problem; Parameter identification problem; Finite difference method; Integral conditions; STURM-LIOUVILLE OPERATOR; COEFFICIENTS;
D O I
10.1007/s40995-017-0387-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, an efficient method is developed for identifying the unknown time-dependent terms in parabolic differential equations from the boundary measurements. The presented approach is based on the forward finite difference and backward finite difference methods for solving the corresponding problem which has integral conditions. Some numerical examples are presented to show the efficiency and applicability of proposed method.
引用
收藏
页码:2045 / 2052
页数:8
相关论文
共 26 条
[1]  
Anikonov Yu. E., 2001, J INVERSE ILL POSED, V9, P469
[2]  
Anikonov Yu. E., 1999, J INVERSE ILL-POSE P, V7, P435
[3]  
[Anonymous], 1995, Numerical Solution of Partial Differential Equations, DOI 10.1017/CBO9780511812248
[4]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[5]   A Numerical Approximation to the Solution of an Inverse Heat Conduction Problem [J].
Azari, Hossein ;
Zhang, Shuhua .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (01) :95-106
[6]  
Belov Yu.Ya., 2004, DOKL AKAD NAUK, V396, P583
[7]   DETERMINING UNKNOWN COEFFICIENTS IN A NONLINEAR HEAT-CONDUCTION PROBLEM [J].
CANNON, JR ;
DUCHATEA.P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 24 (03) :298-314
[8]   AN INVERSE PROBLEM OF FINDING A PARAMETER IN A SEMILINEAR HEAT-EQUATION [J].
CANNON, JR ;
LIN, YP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 145 (02) :470-484
[9]   A GALERKIN PROCEDURE FOR THE DIFFUSION EQUATION SUBJECT TO THE SPECIFICATION OF MASS [J].
CANNON, JR ;
ESTEVA, SP ;
VANDERHOEK, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) :499-515
[10]   Reconstruction of the coefficients of the stationary transport equation from boundary measurements [J].
Choulli, M ;
Stefanov, P .
INVERSE PROBLEMS, 1996, 12 (05) :L19-L23