Triboelectric-thermoelectric hybrid nanogenerator for harvesting frictional energy

被引:47
|
作者
Kim, Min-Ki [1 ]
Kim, Myoung-Soo [1 ]
Jo, Sung-Eun [1 ]
Kim, Yong-Jun [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, 134 Shinchon Dong, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
energy harvesting; hybrid nanogenerator; friction heat; triboelectric; thermoelectric; GENERATOR; CELL;
D O I
10.1088/0964-1726/25/12/125007
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The triboelectric nanogenerator, an energy harvesting device that converts external kinetic energy into electrical energy through using a nano-structured triboelectric material, is well known as an energy harvester with a simple structure and high output voltage. However, triboelectric nanogenerators also inevitably generate heat resulting from the friction that arises from their inherent sliding motions. In this paper, we present a hybrid nanogenerator, which integrates a triboelectric generator and a thermoelectric generator (TEG) for harvesting both the kinetic friction energy and the heat energy that would otherwise be wasted. The triboelectric part consists of a polytetrafluoroethylene (PTFE) film with nano-structures and a movable aluminum panel. The thermoelectric part is attached to the bottom of the PTFE film by an adhesive phase change material layer. We confirmed that the hybrid nanogenerator can generate an output power that is higher than that generated by a single triboelectric nanogenerator or a TEG. The hybrid nanogenerator was capable of producing a power density of 14.98 mW cm(-2). The output power, produced from a sliding motion of 12 cm s(-1), was capable of instantaneously lighting up 100 commercial LED bulbs. The hybrid nanogenerator can charge a 47 mu F capacitor at a charging rate of 7.0 mV s(-1), which is 13.3% faster than a single triboelectric generator. Furthermore, the efficiency of the device was significantly improved by the addition of a heat source. This hybrid energy harvester does not require any difficult fabrication steps, relative to existing triboelectric nanogenerators. The present study addresses a method for increasing the efficiency while solving other problems associated with triboelectric nanogenerators.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Systematic literature review of wave energy harvesting using triboelectric nanogenerator
    Salman, Mohamed
    Sorokin, Vladislav
    Aw, Kean
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 201
  • [22] Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion
    Xia, Kequan
    Zhu, Zhiyuan
    Zhang, Hongze
    Du, Chaolin
    Fu, Jiangming
    Xu, Zhiwei
    NANO ENERGY, 2019, 56 : 400 - 410
  • [23] Hybrid Triboelectric-Electromagnetic Nanogenerator Based on a Tower Spring for Harvesting Omnidirectional Vibration Energy
    Cao, Zhi
    Yuan, Zhihao
    Han, Chengcheng
    Feng, Junrui
    Wang, Baocheng
    Wang, Zhong Lin
    Wu, Zhiyi
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 11577 - 11585
  • [24] Triboelectric and Electromagnetic Hybrid Nanogenerator Based on a Crankshaft Piston System as a Multifunctional Energy Harvesting Device
    Yang, Huake
    Yang, Hongmei
    Lai, Meihui
    Xi, Yi
    Guan, Yuzhu
    Liu, Wenlin
    Zeng, Qixuan
    Lu, Junlin
    Hu, Chenguo
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (02):
  • [25] Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting
    Chen, Chaoyu
    Guo, Hengyu
    Chen, Lijun
    Wang, Yi-Cheng
    Pu, Xianjie
    Yu, Weidong
    Wang, Fumei
    Du, Zhaoqun
    Wang, Zhong Lin
    ACS NANO, 2020, 14 (04) : 4585 - 4594
  • [26] SOME ADVANCES IN ENERGY HARVESTING TECHNOLOGY OF NONLINEAR TRIBOELECTRIC NANOGENERATOR
    Tan, Dongguo
    Chi, Shimin
    Ou, Xu
    Zhou, Jiaxi
    Wang, Kai
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2024, 56 (09): : 2495 - 2510
  • [27] A Leaf-Shaped Triboelectric Nanogenerator for Multiple Ambient Mechanical Energy Harvesting
    Jiang, Dongdong
    Liu, Guoxu
    Li, Wenjian
    Bu, Tiaozhao
    Wang, Yipu
    Zhang, Zhi
    Pang, Yaokun
    Xu, Shaohang
    Yang, Hang
    Zhang, Chi
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (01) : 25 - 32
  • [28] Arc-Shaped Triboelectric Nanogenerator for Wind Energy Harvesting
    Wang, Nan
    Huang, Hui
    Zhu, Wenxuan
    Zhao, Xue
    Yang, Ya
    ENERGY TECHNOLOGY, 2022, 10 (05)
  • [29] A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy
    Zhao, Da
    Li, Hengyu
    Wang, Jianlong
    Gao, Qi
    Yu, Yang
    Wen, Jianming
    Wang, Zhong Lin
    Cheng, Tinghai
    NANO RESEARCH, 2023, 16 (08) : 10931 - 10937
  • [30] Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting
    Xi, Yinhu
    Hua, Jing
    Shi, Yijun
    NANO ENERGY, 2020, 69