Investigation of design parameter effects on high current performance of lithium-ion cells with LiFePO4/graphite electrodes

被引:38
作者
Yu, Seungho [1 ]
Chung, Youngmin [1 ]
Song, Min Seob [1 ]
Nam, Jin Hyun [2 ]
Cho, Won Il [1 ]
机构
[1] Korea Inst Sci & Technol, Ctr Energy Convergence, Seoul 136791, South Korea
[2] Daegu Univ, Sch Mech & Automot Engn, Gyongsan 712714, South Korea
关键词
Lithium-ion battery; LiFePO4; Battery design parameter; Electrode thickness; Active material density; Electrochemical modeling; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; LIFEPO4; CARBON; DISCHARGE;
D O I
10.1007/s10800-012-0418-0
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrode design is an essential task for successful development of lithium-ion batteries. Provided that the same materials are given, proper dimensioning of the electrodes and balanced composition of the materials in them can maximize the cell performance, such as the discharge capacity. However, many electrode design parameters have conflicting effects on the performance, and thus careful optimization of these parameters is required. This study experimentally investigated the effects of several electrode design parameters on the performance of lithium ion cells with a LiFePO4 cathode and a natural graphite anode, focusing on their high current operations. The conflicting effects of the conductor ratio (the weight fraction of electronic particle additives), electrode thickness, and electrode density (porosity) on the cell capacity were studied. In addition, a detailed one-dimensional electrochemical model was also used to simulate the observed performance characteristics and to identify their underlying mechanisms limiting the performance. Based on the experimental and numerical results, the optimal ranges for the electrode design parameters were discussed to achieve better performance of the LiFePO4/graphite batteries.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 25 条
[1]   Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials [J].
Chen, Y. -H. ;
Wang, C. -W. ;
Zhang, X. ;
Sastry, A. M. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2851-2862
[2]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[3]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[4]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[5]   Wired porous cathode materials:: A novel concept for synthesis of LiFePO4 [J].
Dominko, Robert ;
Bele, Marjan ;
Goupil, Jean-Michel ;
Gaberscek, Miran ;
Hanzel, Darko ;
Arcon, Iztok ;
Jamnik, Janez .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :2960-2969
[6]   Comparison of modeling predictions with experimental data from plastic lithium ion cells [J].
Doyle, M ;
Newman, J ;
Gozdz, AS ;
Schmutz, CN ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) :1890-1903
[7]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[8]   Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes [J].
Fongy, C. ;
Gaillot, A. -C. ;
Jouanneau, S. ;
Guyomard, D. ;
Lestriez, B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A885-A891
[9]   RELAXATION PHENOMENA IN LITHIUM-ION-INSERTION CELLS [J].
FULLER, TF ;
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (04) :982-990
[10]   Towards optimized preparation of cathode materials: How can modeling and concepts be used in practice [J].
Gaberscek, Miran .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :22-27