Optical beams in sub-strongly non-local nonlinear media: A variational solution

被引:42
作者
Guo, Q [1 ]
Luo, B
Chi, S
机构
[1] S China Normal Univ, Lab Light Transmiss Opt, Guangzhou 510631, Guangdong, Peoples R China
[2] Natl Chiao Tung Univ, Inst Electopt Engn, Hsinchu, Taiwan
基金
中国国家自然科学基金;
关键词
optical beams; non-local nonlinear media; sub-strong non-locality; spatial optical solitons; variational approach;
D O I
10.1016/j.optcom.2005.08.067
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Discussed is the propagation of optical beams in non-local nonlinear media modelled by 1 + 1D non-local nonlinear Schrodinger equation (NNLSE). In the sub-strongly non-local case, an approximate analytical solution is obtained for an arbitrary response function by a variational approach. Described by a combination of the Jacobian elliptic functions, the solution is periodic, and its period depends on not only the input power but also the initial beam width, which is confirmed by the numerical simulation of the NNLSE. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:336 / 341
页数:6
相关论文
共 31 条
[1]   Solitary waves and their critical behavior in a nonlinear nonlocal medium with power-law response [J].
Abe, S ;
Ogura, A .
PHYSICAL REVIEW E, 1998, 57 (05) :6066-6070
[2]   Spatial solitons in Kerr and Kerr-like media [J].
Akhmediev, NN .
OPTICAL AND QUANTUM ELECTRONICS, 1998, 30 (7-10) :535-569
[3]   VARIATIONAL APPROACH TO NON-LINEAR PULSE-PROPAGATION IN OPTICAL FIBERS [J].
ANDERSON, D .
PHYSICAL REVIEW A, 1983, 27 (06) :3135-3145
[4]   Spatial solitons in nematic liquid crystals [J].
Assanto, G ;
Peccianti, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (01) :13-21
[5]   Ring vortex solitons in nonlocal nonlinear media [J].
Briedis, D ;
Petersen, DE ;
Edmundson, D ;
Krolikowski, W ;
Bang, O .
OPTICS EXPRESS, 2005, 13 (02) :435-443
[6]   Observation of optical spatial solitons in a highly nonlocal medium [J].
Conti, C ;
Peccianti, M ;
Assanto, G .
PHYSICAL REVIEW LETTERS, 2004, 92 (11) :113902-1
[7]   Route to nonlocality and observation of accessible solitons [J].
Conti, C ;
Peccianti, M ;
Assanto, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (07)
[8]  
ERDELYI A, 1953, HIGH TRANSCENDENTAL, V2, P294
[9]   Sub-wavelength non-local spatial solitons [J].
Granot, E ;
Sternklar, S ;
Isbi, Y ;
Malomed, B ;
Lewis, A .
OPTICS COMMUNICATIONS, 1999, 166 (1-6) :121-126
[10]   Nonlocal spatial solitons and their interactions [J].
Guo, Q .
APOC 2003: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS; OPTICAL TRANSMISSION, SWITCHING, AND SUBSYSTEMS, 2004, 5281 :581-594