Random trees in the boundary of outer space

被引:1
作者
Kapovich, Ilya [1 ]
Maher, Joseph [2 ,3 ]
Pfaff, Catherine [4 ]
Taylor, Samuel J. [5 ]
机构
[1] CUNY, Dept Math & Stat, Hunter Coll, New York, NY 10031 USA
[2] CUNY, Coll Staten Isl, Dept Math, Staten Isl, NY USA
[3] CUNY, Grad Ctr, Staten Isl, NY USA
[4] Queens Univ, Dept Math & Stat, Kingston, ON, Canada
[5] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
基金
美国国家科学基金会;
关键词
AUTOMORPHISMS; LAMINATIONS; EXTENSIONS; GEODESICS; COMPLEX;
D O I
10.2140/gt.2022.26.127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for the harmonic measure associated to a random walk on Out(F-r) satisfying some mild conditions, a typical tree in the boundary of Outer space is trivalent and nongeometric. This result answers a question of Mladen Bestvina.
引用
收藏
页码:127 / 162
页数:36
相关论文
共 48 条
  • [31] Sublinearity of the number of semi-infinite branches for geometric random trees
    Coupier, David
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [32] BOUNDARY REGULARITY OF BERGMAN KERNEL IN HoLDER SPACE
    Shi, Ziming
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 324 (01) : 157 - 206
  • [33] The Moduli Space of Twisted Laplacians and Random Matrix Theory
    Marklof, Jens
    Monk, Laura
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024,
  • [34] A theoretical study of the formation of glycine via hydantoin intermediate in outer space environment
    Kayanuma, Megumi
    Kidachi, Kaori
    Shoji, Mitsuo
    Komatsu, Yu
    Sato, Akimasa
    Shigeta, Yasuteru
    Aikawa, Yuri
    Umemura, Masayuki
    CHEMICAL PHYSICS LETTERS, 2017, 687 : 178 - 183
  • [35] Taking the high-edge route of rank-3 outer space
    Gagnier, Damara
    Pfaff, Catherine
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2023, 33 (08) : 1659 - 1685
  • [36] The boundary at infinity of the curve complex and the relative Teichmuller space
    Klarreich, Erica
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (02) : 705 - 723
  • [37] A Thurston boundary and visual sphere of the universal Teichmuller space
    Hakobyan, Hrant
    Saric, Dragomir
    JOURNAL D ANALYSE MATHEMATIQUE, 2021, 143 (02): : 681 - 721
  • [38] Mean first-passage time for random walks on generalized deterministic recursive trees
    Comellas, Francesc
    Miralles, Alicia
    PHYSICAL REVIEW E, 2010, 81 (06)
  • [39] Earthquakes and Thurston's boundary for the Teichmuller space of the universal hyperbolic solenoid
    Saric, Dragomir
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 233 (01) : 205 - 228
  • [40] Explicit determination of mean first-passage time for random walks on deterministic uniform recursive trees
    Zhang, Zhongzhi
    Qi, Yi
    Zhou, Shuigeng
    Gao, Shuyang
    Guan, Jihong
    PHYSICAL REVIEW E, 2010, 81 (01)