Synthesis and characterization of nano-hydroxyapatite rods/poly(L-lactide acid) composite scaffolds for bone tissue engineering

被引:158
|
作者
Nejati, E. [1 ]
Mirzadeh, H. [2 ,3 ]
Zandi, M. [3 ]
机构
[1] Clemson Univ, Sch Mat Sci & Engn, AMRL, Clemson, SC 29625 USA
[2] Amirkabir Univ Technol, Dept Polymer Engn, Tehran, Iran
[3] Iran Polymer & Petrochem Inst, Tehran, Iran
关键词
Nanoparticle; Hydroxyapatite; Bone tissue engineering;
D O I
10.1016/j.compositesa.2008.05.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aims of this work were synthesis of rod shaped nano-hydroxyapatite (nHAP) and fabrication of novel nano-hydroxyapatite/poly(L-lactide acid) (nHAP/PLLA) composite scaffold. In the first step, the identification and morphology of chemically synthesized nHAP particles were determined by XRD, EDX, FTIR and SEM analyses. The rod shaped nHAP particles with an average size of approximately 37-65 nm in width and 100-400 nm in length were found similar to natural bone apatite in terms of chemical composition and structural morphology. In the second step, nHAP and micro sized HAP (mHAP) particles were used to fabricate HAP filled PLLA (HAP/PLLA) composites scaffolds using thermally induced phase separation method. The porosity of scaffolds was up to 85.06% and their average macropore diameter was in the range of 64-175 mu m. MR and XRD analyses showed some molecular interactions and chemical linkages between HAP particles and PLLA matrix. The compressive strength of nanocomposite scaffolds could high up to 14.9 MPa while those of pure PLLA and microcomposite scaffolds were 1.79 and 13.68 MPa, respectively. The cell affinity and biocompatibility of the nanocomposite scaffold were found to be higher than those of pure PLLA and microcomposite scaffolds. Following the results, the newly developed nHAP/PLLA composite scaffold is comparable with cancellous bone in terms of microstructure and mechanical strength, so it may be considered for bone tissue engineering applications. Published by Elsevier Ltd.
引用
收藏
页码:1589 / 1596
页数:8
相关论文
共 50 条
  • [41] Three-dimensional-poly(lactic acid) scaffolds coated with gelatin/magnesium-doped nano-hydroxyapatite for bone tissue engineering
    Swetha, Sampath
    Balagangadharan, Kalimuthu
    Lavanya, Krishnaraj
    Selvamurugan, Nagarajan
    BIOTECHNOLOGY JOURNAL, 2021, 16 (11)
  • [42] Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering
    Lu, Hsien-Tsung
    Lu, Tzu-Wei
    Chen, Chien-Ho
    Mi, Fwu-Long
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 128 : 973 - 984
  • [43] Poly(L-lactic acid)/Hydroxyapatite Nanocylinders as Nanofibrous Structure for Bone Tissue Engineering Scaffolds
    Lee, Jung Bok
    Park, Ha Na
    Ko, Wan-Kyu
    Bae, Min Soo
    Heo, Dong Nyoung
    Yang, Dae Hyeok
    Kwon, Il Keun
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2013, 9 (03) : 424 - 429
  • [44] Synthesis and characterization of nanocrystalline forsterite coated poly(L-lactide-co-β-malic acid) scaffolds for bone tissue engineering applications
    Mozafari, M.
    Gholipourmalekabadi, M.
    Chauhan, N. P. S.
    Jalali, N.
    Asgari, S.
    Caicedoa, J. C.
    Hamlekhan, A.
    Urbanska, A. M.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 50 : 117 - 123
  • [45] Preparation and Characterization of Nano-Hydroxyapatite/Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Composite Fibers for Tissue Engineering
    Fu, ShaoZhi
    Wang, XiuHong
    Guo, Gang
    Shi, Shuai
    Liang, Hang
    Luo, Feng
    Wei, YuQuan
    Qian, ZhiYong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (43) : 18372 - 18378
  • [46] Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering
    Gráinne M. Cunniffe
    Glenn R. Dickson
    Sonia Partap
    Kenneth T. Stanton
    Fergal J. O’Brien
    Journal of Materials Science: Materials in Medicine, 2010, 21 : 2293 - 2298
  • [47] Selective laser sintering of tissue engineering scaffolds using poly(L-lactide) microspheres
    Zhou, W. Y.
    Lee, S. H.
    Wang, M.
    Cheung, W. L.
    ADVANCES IN COMPOSITE MATERIALS AND STRUCTURES, PTS 1 AND 2, 2007, 334-335 : 1225 - +
  • [48] Hydroxyapatite-poly(d,l-lactide) Nanografts. Synthesis and Characterization as Bone Cement Additives
    Goranova, Kristina L.
    Kattenhoj Sloth Overgaard, Anne Kathrine
    Gitsov, Ivan
    MOLECULES, 2021, 26 (02):
  • [49] Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (L-lactide) composite rods for internal fixation of bone fractures
    Furukawa, T
    Matsusue, Y
    Yasunaga, T
    Shikinami, Y
    Okuno, M
    Nakamura, T
    BIOMATERIALS, 2000, 21 (09) : 889 - 898
  • [50] Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering
    Ao, Chenghong
    Niu, Yan
    Zhang, Ximu
    He, Xu
    Zhang, Wei
    Lu, Canhui
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 97 : 568 - 573