A descriptive marker gene approach to single-cell pseudotime inference

被引:24
作者
Campbell, Kieran R. [1 ,2 ,5 ]
Yau, Christopher [2 ,3 ,4 ]
机构
[1] Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3QX, England
[2] Univ Oxford, Wellcome Trust, Ctr Human Genet, Oxford OX3 7BN, England
[3] Univ Oxford, Dept Stat, Oxford OX1 3LB, England
[4] Univ Birmingham, Ctr Computat Biol, Inst Canc & Genom Sci, Birmingham B15 2TT, W Midlands, England
[5] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z4, Canada
基金
英国医学研究理事会;
关键词
RNA-SEQ REVEALS; DIFFERENTIAL EXPRESSION; RECONSTRUCTION; DIMENSIONALITY; REGULATORS; DYNAMICS; PROGRAMS; CYCLE;
D O I
10.1093/bioinformatics/bty498
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Pseudotime estimation from single-cell gene expression data allows the recovery of temporal information from otherwise static profiles of individual cells. Conventional pseudotime inference methods emphasize an unsupervised transcriptome-wide approach and use retrospective analysis to evaluate the behaviour of individual genes. However, the resulting trajectories can only be understood in terms of abstract geometric structures and not in terms of interpretable models of gene behaviour. Results: Here we introduce an orthogonal Bayesian approach termed 'Ouija' that learns pseudotimes from a small set of marker genes that might ordinarily be used to retrospectively confirm the accuracy of unsupervised pseudotime algorithms. Crucially, we model these genes in terms of switch-like or transient behaviour along the trajectory, allowing us to understand why the pseudotimes have been inferred and learn informative parameters about the behaviour of each gene. Since each gene is associated with a switch or peak time the genes are effectively ordered along with the cells, allowing each part of the trajectory to be understood in terms of the behaviour of certain genes. We demonstrate that this small panel of marker genes can recover pseudotimes that are consistent with those obtained using the entire transcriptome. Furthermore, we show that our method can detect differences in the regulation timings between two genes and identify 'metastable' states-discrete cell types along the continuous trajectories-that recapitulate known cell types.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 39 条
  • [1] Abadi M., 2015, TensorFlow: Large-scale machine learning on heterogeneous systems
  • [2] Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development
    Bendall, Sean C.
    Davis, Kara L.
    Amir, El-ad David
    Tadmor, Michelle D.
    Simonds, Erin F.
    Chen, Tiffany J.
    Shenfeld, Daniel K.
    Nolan, Garry P.
    Pe'er, Dana
    [J]. CELL, 2014, 157 (03) : 714 - 725
  • [3] Identifying differential correlation in gene/pathway combinations
    Braun, Rosemary
    Cope, Leslie
    Parmigiani, Giovanni
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [4] Campbell Kieran R, 2017, Wellcome Open Res, V2, P19, DOI 10.12688/wellcomeopenres.11087.1
  • [5] switchde: inference of switch-like differential expression along single-cell trajectories
    Campbell, Kieran R.
    Yau, Christopher
    [J]. BIOINFORMATICS, 2017, 33 (08) : 1241 - 1242
  • [6] Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference
    Campbell, Kieran R.
    Yau, Christopher
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (11)
  • [7] Stan: A Probabilistic Programming Language
    Carpenter, Bob
    Gelman, Andrew
    Hoffman, Matthew D.
    Lee, Daniel
    Goodrich, Ben
    Betancourt, Michael
    Brubaker, Marcus A.
    Guo, Jiqiang
    Li, Peter
    Riddell, Allen
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01): : 1 - 29
  • [8] Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm
    Chu, Li-Fang
    Leng, Ning
    Zhang, Jue
    Hou, Zhonggang
    Mamott, Daniel
    Vereide, David T.
    Choi, Jeea
    Kendziorski, Christina
    Stewart, Ron
    Thomson, James A.
    [J]. GENOME BIOLOGY, 2016, 17
  • [9] Cleary B, 2017, COMPOSITE MEASUREMEN
  • [10] Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage
    Dulken, Ben W.
    Leeman, Dena S.
    Boutet, Stephane C.
    Hebestreit, Katja
    Brunet, Anne
    [J]. CELL REPORTS, 2017, 18 (03): : 777 - 790