A NOTE ON UNITS OF REAL QUADRATIC FIELDS

被引:3
作者
Byeon, Dongho [1 ]
Lee, Sangyoon [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
units; real quadratic fields; ARTIN-CHOWLA CONJECTURE; FUNDAMENTAL UNITS;
D O I
10.4134/BKMS.2012.49.4.767
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive square-free integer d, let t(d) and u(d) be positive integers such that is an element of(d) = t(d)+u(d)root d/sigma is the fundamental unit of the real quadratic field Q(root d), where sigma = 2 if d equivalent to 1 (mod 4) and sigma = 1 otherwise. For a given positive integer l and a palindromic sequence of positive integers a(1), . . . ,a(l-1) we define the set S(l; a(1), . . . ,a(l-1)) := {d is an element of Z vertical bar d > 0, root d = [a(0), <(a(1), . . . , a(l-1) , 2a(0))]}. We prove that u(d) < d for all square-free integer d is an element of S(l; a(1), . . . ,a(l-1)) with one possible exception and apply it to Ankeny-Artin-Chowla conjecture and Mordell conjecture.
引用
收藏
页码:767 / 774
页数:8
相关论文
共 8 条
[1]  
Beach B.D., 1971, P 25 SUMM M CAN MATH, P609
[2]   Ankeny-Artin-Chowla conjecture and continued fraction expansion [J].
Hashimoto, R .
JOURNAL OF NUMBER THEORY, 2001, 90 (01) :143-153
[3]   Multi-variable polynomial solutions to Pell's equation and fundamental units in real quadratic fields [J].
Mc Laughlin, J .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 210 (02) :335-349
[4]  
Mollin R. A., 1986, C. R. Math. Rep. Acad. Sci. Canada, V8, P109
[5]  
MOLLIN RA, 1996, CRC PRESS SERIES DIS
[6]   Explicit representation of fundamental units of some real quadratic fields .2. [J].
Tomita, K .
JOURNAL OF NUMBER THEORY, 1997, 63 (02) :275-285
[7]  
Van der Poorten AJ, 2003, MATH COMPUT, V72, P521, DOI 10.1090/S0025-5718-02-01527-2
[8]  
Van der Poorten AJ, 2001, MATH COMPUT, V70, P1311, DOI 10.1090/S0025-5718-00-01234-5