Periodic solution to nonlinear differential equation at resonance

被引:0
作者
Weiguo, Li [1 ]
机构
[1] China Univ Petr, Sch Math & Computat Sci, Dongying 257061, Shandong, Peoples R China
关键词
nonlinear Sturm-Liouville problem; resonance; unique existence; periodic solution; max-min principle; non-variational version;
D O I
10.1016/j.amc.2008.05.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of nonlinear Sturm-Liouville problems at resonance is discussed. An extended form of a non-variational version of a max-min principle is applied to show that the equation possesses unique 2 pi-periodic solution under a less restrictive condition. This result extends what we have already known. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:698 / 702
页数:5
相关论文
共 8 条
[1]   Periodic solutions for 2kth boundary value problem with resonance [J].
Chen, JH ;
Li, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (02) :661-671
[2]   Periodic solutions for second order differential equations [J].
Cong, FZ .
APPLIED MATHEMATICS LETTERS, 2005, 18 (08) :957-961
[3]  
Li WG, 2000, NONLINEAR ANAL-THEOR, V42, P1209
[4]  
Li WG, 2001, J MATH ANAL APPL, V259, P157
[5]   A NON VARIATIONAL VERSION OF A MAX-MIN PRINCIPLE [J].
MANASEVICH, RF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (06) :565-570
[6]  
SHEN ZH, 1989, NONLINEAR ANAL-THEOR, V13, P145, DOI 10.1016/0362-546X(89)90040-0
[8]   Existence and uniqueness of periodic solution for a class of differential systems [J].
Yang, Xiaojing ;
Lo, Kueiming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :36-46