Resistance to a highly aggressive isolate of Sclerotinia sclerotiorum in a Brassica napus diversity set

被引:36
|
作者
Taylor, A. [1 ]
Coventry, E. [2 ]
Jones, J. E. [1 ]
Clarkson, J. P. [1 ]
机构
[1] Univ Warwick, Sch Life Sci, Warwick Crop Ctr, Wellesbourne CV35 9EF, Warwick, England
[2] NIAB, Cambridge CB3 0LE, England
关键词
Brassica napus; resistance screening; Sclerotinia sclerotiorum; sclerotinia stem rot; WESTERN-AUSTRALIAN CONDITIONS; WINTER OILSEED RAPE; STEM ROT; POPULATION-STRUCTURE; JUNCEA GERMPLASM; B; JUNCEA; CROP; IDENTIFICATION; INOCULATION; GENOTYPES;
D O I
10.1111/ppa.12327
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Sclerotinia stem rot (SSR) of oilseed rape (OSR, Brassica napus), caused by Sclerotinia sclerotiorum, is a serious problem in the UK and worldwide. As fungicide-based control approaches are not always reliable, identifying host resistance is a desirable and sustainable approach to disease management. This research initially examined the aggressiveness of 18 Sclerotinia isolates (17 S.sclerotiorum, one S.subarctica) on cultivated representatives of B.rapa, B.oleracea and B.napus using a young plant test. Significant differences were observed between isolates and susceptibility of the brassica crop types, with B.rapa being the most susceptible. Sclerotinia sclerotiorum isolates from crop hosts were more aggressive than those from wild buttercup (Ranunculus acris). Sclerotinia sclerotiorum isolates P7 (pea) and DG4 (buttercup), identified as aggressive' and weakly aggressive', respectively, were used to screen 96 B.napus lines for SSR resistance in a young plant test. A subset of 20 lines was further evaluated using the same test and also in a stem inoculation test on flowering plants. A high level of SSR resistance was observed for five lines and, although there was some variability between tests, one winter OSR (line 3, Czech Republic) and one rape kale (line 83, UK) demonstrated consistent resistance. Additionally, one swede (line 69, Norway) showed an outstanding level of resistance in the stem test. Resistant lines also had fewer sclerotia forming in stems. New pre-breeding material for the production of SSR resistant OSR cultivars relevant to conditions in the UK and Europe has therefore been identified.
引用
收藏
页码:932 / 940
页数:9
相关论文
共 50 条
  • [1] Temperature and Isolate Are Important Determinants of Brassica napus Susceptibility to Aggressive Sclerotinia sclerotiorum Isolates
    Michael, Pippa J.
    Lamichhane, Ashmita Rijal
    Bennett, Sarita Jane
    AGRONOMY-BASEL, 2023, 13 (06):
  • [2] Partial stem resistance in Brassica napus to highly aggressive and genetically diverse Sclerotinia sclerotiorum isolates from Australia
    Denton-Giles, Matthew
    Derbyshire, Mark C.
    Khentry, Yuphin
    Buchwaldt, Lone
    Kamphuis, Lars G.
    CANADIAN JOURNAL OF PLANT PATHOLOGY, 2018, 40 (04) : 551 - 561
  • [3] Patterns of inheritance for cotyledon resistance against Sclerotinia sclerotiorum in Brassica napus
    Khan, Muhammad Azam
    Cowling, Wallace
    Banga, Surinder Singh
    You, Ming Pei
    Tyagi, Vikrant
    Bharti, Baudh
    Barbetti, Martin J.
    EUPHYTICA, 2020, 216 (05)
  • [4] Patterns of inheritance for cotyledon resistance against Sclerotinia sclerotiorum in Brassica napus
    Muhammad Azam Khan
    Wallace Cowling
    Surinder Singh Banga
    Ming Pei You
    Vikrant Tyagi
    Baudh Bharti
    Martin J. Barbetti
    Euphytica, 2020, 216
  • [5] The primary study of oligochitosan inducing resistance to Sclerotinia sclerotiorum on Brassica napus
    Yin, Heng
    Bai, Xuefang
    Du, Yuguang
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S600 - S601
  • [6] Lectin genes in canola (Brassica napus) confer resistance to Sclerotinia sclerotiorum
    Buchwaldt, L.
    Hegedus, D.
    Dzananovic, E.
    Bekkaoui, D.
    Durkin, J.
    Fu, F.
    Nettleton, J.
    PHYTOPATHOLOGY, 2018, 108 (10) : 173 - 173
  • [7] Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus
    Jiqiang Li
    Zunkang Zhao
    Alice Hayward
    Hongyu Cheng
    Donghui Fu
    Euphytica, 2015, 205 : 483 - 489
  • [8] Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum
    Y. Fan
    K. Du
    Y. Gao
    Y. Kong
    C. Chu
    V. Sokolov
    Y. Wang
    Russian Journal of Genetics, 2013, 49 : 380 - 387
  • [9] Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea
    Yijuan Ding
    Jiaqin Mei
    Qinfei Li
    Yao Liu
    Huafang Wan
    Lei Wang
    Heiko C. Becker
    Wei Qian
    Genetic Resources and Crop Evolution, 2013, 60 : 1615 - 1619
  • [10] Evaluation of Brassica napus accessions for resistance to Sclerotinia sclerotiorum in greenhouse and field conditions
    Khot, S.
    Bradley, C.
    Bilgi, V.
    del Rio, L.
    PHYTOPATHOLOGY, 2005, 95 (06) : S53 - S53