The Selberg-Delange method in short intervals with some applications

被引:11
作者
Cui, Zhen [1 ]
Lu, Guangshi [2 ]
Wu, Jie [3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Yangtze Normal Univ, Sch Math & Stat, Chongqing 200240, Peoples R China
[4] Univ Lorraine, Inst Elie Cartan Lorraine, F-54506 Vandoeuvre Les Nancy, France
基金
中国国家自然科学基金;
关键词
asymptotic results on arithmetic functions; Selberg-Delange method; arithmetic functions; distribution of integers; 11N37;
D O I
10.1007/s11425-017-9172-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a quite general mean value result of arithmetic functions over short intervals with the Selberg-Delange method and give some applications. In particular, we generalize Selberg's result on the distribution of integers with a given number of prime factors and Deshouillers-Dress-Tenenbaum's arcsin law on divisors to the short interval case.
引用
收藏
页码:447 / 468
页数:22
相关论文
共 22 条
[1]   The Selberg-Delange method in short intervals with an application [J].
Cui, Z. ;
Wu, J. .
ACTA ARITHMETICA, 2014, 163 (03) :247-260
[2]  
Delange H., 1959, Bull. Sci. Math., V83, P101
[3]  
Delange H., 1971, Acta Arith., V19, P105, DOI [10.4064/aa-19-2-105-146, DOI 10.4064/AA-19-2-105-146]
[4]  
Deshouillers J.-M., 1979, ACTA ARITH, V34, P273
[5]   The divisor problem for d4(n) in short intervals [J].
Garaev, MZ ;
Luca, F ;
Nowak, WG .
ARCHIV DER MATHEMATIK, 2006, 86 (01) :60-66
[6]  
HOOLEY C, 1974, J REINE ANGEW MATH, V267, P207
[7]  
HUXLEY MN, 1972, INVENT MATH, V15, P164
[8]  
Ivi A., 1985, The Riemann Zeta-Function: Theory and Applications
[9]  
KATAI I, 1985, LECT NOTES MATH, V1122, P147
[10]  
Katai I., 2003, LITH MATH J, V43, P410