Prediction of Compressive Strength Behavior of Ground Bottom Ash Concrete by an Artificial Neural Network

被引:8
|
作者
Tuntisukrarom, Kraiwut [1 ]
Cheerarot, Raungrut [1 ]
机构
[1] Mahasarakham Univ, Fac Engn, Concrete & Comp Res Unit, Civil Engn, Kantharawichai 44150, Mahasarakham, Thailand
关键词
OPTIMIZATION; DESIGN; CEMENT;
D O I
10.1155/2020/2608231
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The objective of this work was to examine the compressive strength behavior of ground bottom ash (GBA) concrete by using an artificial neural network. Four input parameters, specifically, the water-to-binder ratio (WB), percentage replacement of GBA (PR), median particle size of GBA (PS), and age of concrete (AC), were considered for this prediction. The results indicated that all four considered parameters affect the strength development of concrete, and GBA with a high fineness can act as a good pozzolanic material. The optimal ANN model had an architecture with two hidden layers, with six neurons in the first hidden layer and one neuron in the second hidden layer. The proposed ANN-based explicit equation represented a highly accurate predictive model, for which the statistical values ofR(2)were higher than 0.996. Moreover, the compressive strength behavior determined using the optimal ANN model closely followed the trend lines and surface plots of the experimental results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks
    Siddique, Rafat
    Aggarwal, Paratibha
    Aggarwal, Yogesh
    ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (10) : 780 - 786
  • [2] Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model
    Li, Chuanqi
    Mei, Xiancheng
    Dias, Daniel
    Cui, Zhen
    Zhou, Jian
    MATERIALS, 2023, 16 (08)
  • [3] Prediction of compressive strength of SCC containing bottom ash using artificial neural networks
    Aggarwal, Yogesh
    World Academy of Science, Engineering and Technology, 2011, 77 : 735 - 740
  • [4] PREDICTION OF THE COMPRESSIVE STRENGTH OF FOAM CONCRETE USING THE ARTIFICIAL NEURAL NETWORK
    Husnah
    Tisnawan, Rahmat
    Maizir, Harnedi
    Suryanita, Reni
    INTERNATIONAL JOURNAL OF GEOMATE, 2022, 23 (99): : 134 - 140
  • [5] Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming
    Chopra, Palika
    Sharma, Rajendra Kumar
    Kumar, Maneek
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2016, 2016
  • [6] Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
    Bu, Liangtao
    Du, Guoqiang
    Hou, Qi
    MATERIALS, 2021, 14 (14)
  • [7] Concrete Compressive Strength Prediction Using Rebound Method with Artificial Neural Network
    Liu, Jianming
    Li, Huijian
    He, Changjun
    MANUFACTURING SCIENCE AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 443-444 : 34 - 39
  • [8] Prediction of Compressive Strength of Aerated Lightweight Aggregate Concrete by Artificial Neural Network
    Kim, Yoo Jae
    Hu, Jiong
    Lee, Soon Jae
    Broughton, Benjamin J.
    GREEN POWER, MATERIALS AND MANUFACTURING TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2011, 84-85 : 177 - 182
  • [9] Optimizing compressive strength prediction of pervious concrete using artificial neural network
    Wijekoon, Sathushka Heshan Bandara
    Janarth, Asoharasa
    Dharmar, Joseph
    Vinojan, Perinparasa
    Sathiparan, Navaratnarajah
    Subramaniam, Daniel Niruban
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [10] Prediction of the Compressive Strength of Fly Ash Geopolymer Concrete by an Optimised Neural Network Model
    Khalaf, Ali Abdulhasan
    Kopecsko, Katalin
    Merta, Ildiko
    POLYMERS, 2022, 14 (07)