An investigation of the electrical transport properties of graphene-oxide thin films

被引:215
作者
Venugopal, Gunasekaran [2 ,3 ,4 ]
Krishnamoorthy, Karthikeyan [2 ]
Mohan, Rajneesh [1 ]
Kim, Sang-Jae [1 ,2 ,5 ,6 ]
机构
[1] Jeju Natl Univ, Dept Mechatron Engn, Cheju 690756, South Korea
[2] Jeju Natl Univ, Dept Mech Engn, Nano Mat & Syst Lab, Cheju 690756, South Korea
[3] Karunya Univ, Fac Nanosci, Coimbatore 641114, Tamil Nadu, India
[4] Karunya Univ, Sch Nanosci & Technol, Dept Technol, Coimbatore 641114, Tamil Nadu, India
[5] Jeju Natl Univ, Fac Mechatron Engn, Cheju 690756, South Korea
[6] Jeju Natl Univ, Res Inst Adv Technol, Cheju 690756, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene oxide; Modified Hummers method; Functional groups; Transistor; WALLED CARBON NANOTUBES; EXFOLIATION; SHEETS;
D O I
10.1016/j.matchemphys.2011.10.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrical transport properties of graphene-oxide (GO) thin films were investigated. The GO was synthesized by a modified Hummers method and was characterized by X-ray diffraction and UV-visible spectroscopy. The thin film of GO was made on a Si/SiO2 substrate by drop-casting. The surface morphology of the GO film was analyzed by using scanning electron microscopy and atomic force microscopy techniques. Temperature dependent resistance and current-voltage measurements were studied using four-terminal method at various temperatures (120, 150, 175,200, 250 and 300 K) and their charge transport followed the 3D variable range hopping mechanism which was well supported by Raman spectra analysis. The presence of various functional groups in GO were identified by using high resolution X-ray photo electron (XPS) and Fourier transform infra red (FT-IR) spectroscopic techniques. Graphene-oxide thin film field effect transistor devices show p-type semiconducting behavior with a hole mobility of 0.25 cm(2) V-1 s(-1) and 0.59 cm(2) V-1 s(-1) when measured in air and vacuum respectively. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 33
页数:5
相关论文
共 42 条
[1]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Directed assembly of single-walled carbon nanotubes via drop-casting onto a UV-patterned photosensitive monolayer [J].
Bardecker, Julie A. ;
Afzali, Ali ;
Tulevski, George S. ;
Graham, Teresita ;
Hannon, James B. ;
Jen, Alex K. -Y. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (23) :7226-+
[4]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[5]   High-Quality Single-Layer Graphene via Reparative Reduction of Graphene Oxide [J].
Dai, Boya ;
Fu, Lei ;
Liao, Lei ;
Liu, Nan ;
Yan, Kai ;
Chen, Yongsheng ;
Liu, Zhongfan .
NANO RESEARCH, 2011, 4 (05) :434-439
[6]   Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors [J].
Du, Qinglai ;
Zheng, Mingbo ;
Zhang, Lifeng ;
Wang, Yongwen ;
Chen, Jinhua ;
Xue, Luping ;
Dai, Weijie ;
Ji, Guangbin ;
Cao, Jieming .
ELECTROCHIMICA ACTA, 2010, 55 (12) :3897-3903
[7]   Insulator to Semimetal Transition in Graphene Oxide [J].
Eda, Goki ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Kim, HoKwon ;
Chhowalla, Manish .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (35) :15768-15771
[8]   Mechanical properties of suspended graphene sheets [J].
Frank, I. W. ;
Tanenbaum, D. M. ;
Van der Zande, A. M. ;
McEuen, P. L. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (06) :2558-2561
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery [J].
Han, Pengxian ;
Wang, Haibo ;
Liu, Zhihong ;
Chen, Xiao ;
Ma, Wen ;
Yao, Jianhua ;
Zhu, Yuwei ;
Cui, Guanglei .
CARBON, 2011, 49 (02) :693-700