Approximate weak greedy algorithms

被引:20
作者
Gribonval, R
Nielsen, M
机构
[1] INRIA, IRISA, F-35042 Rennes, France
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
greedy algorithm; nonlinear approximation;
D O I
10.1023/A:1012255021470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a generalization of Temlyakov's weak greedy algorithm, and give a sufficient condition for norm convergence of the algorithm for an arbitrary dictionary in a Hilbert space. We provide two counter-examples to show that the condition cannot be relaxed for general dictionaries. For a class of dictionaries with more structure, we give a more relaxed necessary and sufficient condition for convergence of the algorithm. We also provide a detailed discussion of how a "real-world" implementation of the weak greedy algorithm, where one has to take into account floating point arithmetic and other types of finite precision errors, can be modeled by the new algorithm.
引用
收藏
页码:361 / 378
页数:18
相关论文
共 24 条
  • [1] BERGEAUD F, 1996, COMPUT APPL MATH, V15
  • [2] BERGEAUD F, 1995, THESIS ECOLE CENTRAL
  • [3] A four-parameter atomic decomposition of chirplets
    Bultan, A
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (03) : 731 - 745
  • [4] COIFMAN R, 1991, CR HEBD ACAD SCI, V1, P259
  • [5] COIFMAN RR, 1992, PROGR WAVELET ANAL A
  • [6] Adaptive greedy approximations
    Davis, G
    Mallat, S
    Avellaneda, M
    [J]. CONSTRUCTIVE APPROXIMATION, 1997, 13 (01) : 57 - 98
  • [7] PROJECTION PURSUIT REGRESSION
    FRIEDMAN, JH
    STUETZLE, W
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) : 817 - 823
  • [8] GRIBONVAL R, 2001, IN PRESS IEEE T MAY
  • [9] GRIBONVAL R, 1999, THESIS U PARIS 9 DAU
  • [10] Gribonval R., 1996, P INT COMP MUS C ICM, P293