Synthetic Learning Set for Object Pose Estimation: Initial Experiments

被引:0
|
作者
Lee, Joo-Haeng [1 ,2 ]
Yun, Woo-Han [1 ]
Lee, Jaeyeon [1 ]
Kim, Jaehong [1 ]
机构
[1] ETRI, Human Machine Interact Grp, Daejeon 34129, South Korea
[2] Univ Sci & Technol, Comp Software Dept, Daejeon 34113, South Korea
来源
2017 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI) | 2017年
关键词
Synthetic learning set; pose estimation; machine learning; robot manipulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We summarize a method to generate a synthetic learning set for object pose estimation in robotic manipulation tasks. Exploiting modern computer graphics techniques, our synthetic learning set satisfies the requirements both in quantitative diversity and qualitative precision. We report the partial results of initial experiments and discuss some future research directions.
引用
收藏
页码:106 / 108
页数:3
相关论文
共 50 条
  • [41] Joint object recognition and pose estimation using multiple-anchor triplet learning of canonical plane
    Yoneda, Shunsuke
    Ueno, Kouki
    Irie, Go
    Nishiyama, Masashi
    Iwai, Yoshio
    PATTERN RECOGNITION LETTERS, 2021, 152 : 372 - 381
  • [42] Learning latent geometric consistency for 6D object pose estimation in heavily cluttered scenes
    Li, Qingnan
    Hu, Ruimin
    Xiao, Jing
    Wang, Zhongyuan
    Chen, Yu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 70
  • [43] Category-Level Object Pose Estimation with Statistic Attention
    Jiang, Changhong
    Mu, Xiaoqiao
    Zhang, Bingbing
    Liang, Chao
    Xie, Mujun
    SENSORS, 2024, 24 (16)
  • [44] Multiview feature distributions for object detection and continuous pose estimation
    Teney, Damien
    Piater, Justus
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 125 : 265 - 282
  • [45] Appearance Based Object Pose Estimation Using Regression Models
    Saito, Mamoru
    Kitaguchi, Katsuhisa
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION AND INSTRUMENTATION, VOL 4, 2008, : 1987 - 1991
  • [46] An industrial solution to object pose estimation for automatic semiconductor fabrication
    HongGen Luo
    LiMin Zhu
    Han Ding
    The International Journal of Advanced Manufacturing Technology, 2007, 32 : 969 - 977
  • [47] Object Pose Estimation Incorporating Projection Loss and Discriminative Refinement
    You, Jiun-Kai
    Hsu, Chen-Chien James
    Wang, Wei-Yen
    Huang, Shao-Kang
    IEEE ACCESS, 2021, 9 : 18597 - 18606
  • [48] The challenge of simultaneous object detection and pose estimation: A comparative study
    Onoro-Rubio, Daniel
    Lopez-Sastre, Roberto J.
    Redondo-Cabrera, Carolina
    Gil-Jimenez, Pedro
    IMAGE AND VISION COMPUTING, 2018, 79 : 109 - 122
  • [49] Benchmarking Convolutional Neural Networks for Object Segmentation and Pose Estimation
    Le, Tiffany
    Hamilton, Lei
    Torralba, Antonio
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [50] Global estimation of an object's pose using tactile sensing
    Bimbo, Joao
    Kormushev, Petar
    Althoefer, Kaspar
    Liu, Hongbin
    ADVANCED ROBOTICS, 2015, 29 (05) : 363 - 374