Synthetic Learning Set for Object Pose Estimation: Initial Experiments

被引:0
|
作者
Lee, Joo-Haeng [1 ,2 ]
Yun, Woo-Han [1 ]
Lee, Jaeyeon [1 ]
Kim, Jaehong [1 ]
机构
[1] ETRI, Human Machine Interact Grp, Daejeon 34129, South Korea
[2] Univ Sci & Technol, Comp Software Dept, Daejeon 34113, South Korea
来源
2017 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI) | 2017年
关键词
Synthetic learning set; pose estimation; machine learning; robot manipulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We summarize a method to generate a synthetic learning set for object pose estimation in robotic manipulation tasks. Exploiting modern computer graphics techniques, our synthetic learning set satisfies the requirements both in quantitative diversity and qualitative precision. We report the partial results of initial experiments and discuss some future research directions.
引用
收藏
页码:106 / 108
页数:3
相关论文
共 50 条
  • [1] Object pose estimation in industrial environments using a synthetic data generation pipeline
    Belke, Manuel
    Blanke, Philipp
    Storms, Simon
    Herfs, Werner
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 435 - 438
  • [2] Object Recognition and Pose Estimation base on Deep Learning
    Xue, Li-wei
    Chen, Li-guo
    Liu, Ji-zhu
    Wang, Yang-jun
    Shen, Qi
    Huang, Hai-bo
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 1288 - 1293
  • [3] Planar Pose Estimation Using Object Detection and Reinforcement Learning
    Rasmussen, Frederik Norby
    Andersen, Sebastian Terp
    Grossmann, Bjarne
    Boukas, Evangelos
    Nalpantidis, Lazaros
    COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 353 - 365
  • [4] Object recognition and pose estimation for modular manipulation system: overview and initial results
    Yun, Woo-han
    Lee, Jaeyeon
    Lee, Joo-Haeng
    Kim, Jaehong
    2017 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2017, : 198 - 201
  • [5] Crane pose estimation using deep learning models and synthetic images
    Park G.
    Hong H.
    Jeong H.
    Kang H.
    Won M.
    Journal of Institute of Control, Robotics and Systems, 2021, 27 (04) : 312 - 319
  • [6] Pose estimation in automatic object recognition
    Chang, CY
    Hoepner, R
    OPTICAL PATTERN RECOGNITION VII, 1996, 2752 : 233 - 240
  • [7] Pose Selection for Underwater Object Detection, Pose Estimation, and Tracking
    Teigland, Hakon
    Hassani, Vahid
    Tore Moller, Ments
    IEEE ACCESS, 2024, 12 : 142331 - 142342
  • [8] 3D Object Pose Estimation Using Viewpoint Generative Learning
    Thachasongtham, Dissaphong
    Yoshida, Takumi
    de Sorbier, Francois
    Saito, Hideo
    IMAGE ANALYSIS, SCIA 2013: 18TH SCANDINAVIAN CONFERENCE, 2013, 7944 : 512 - 521
  • [9] Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar
    Casasent, D
    Shenoy, R
    OPTICAL ENGINEERING, 1997, 36 (10) : 2719 - 2728
  • [10] Graspability-Aware Object Pose Estimation in Cluttered Scenes
    Hoang, Dinh-Cuong
    Nguyen, Anh-Nhat
    Vu, Van-Duc
    Nguyen, Thu-Uyen
    Vu, Duy-Quang
    Ngo, Phuc-Quan
    Hoang, Ngoc-Anh
    Phan, Khanh-Toan
    Tran, Duc-Thanh
    Nguyen, Van-Thiep
    Duong, Quang-Tri
    Ho, Ngoc-Trung
    Tran, Cong-Trinh
    Duong, Van-Hiep
    Mai, Anh-Truong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (04) : 3124 - 3130