Parameter extraction of solar photovoltaic models via quadratic interpolation learning differential evolution

被引:16
作者
Xiong, Guojiang [1 ]
Zhang, Jing [1 ]
Shi, Dongyuan [2 ]
Zhu, Lin [3 ]
Yuan, Xufeng [1 ]
机构
[1] Guizhou Univ, Coll Elect Engn, Guizhou Key Lab Intelligent Technol Power Syst, Guiyang 550025, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[3] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
来源
SUSTAINABLE ENERGY & FUELS | 2020年 / 4卷 / 11期
基金
中国国家自然科学基金;
关键词
CUCKOO SEARCH ALGORITHM; GLOBAL OPTIMIZATION; PV CELLS; IDENTIFICATION; MODULES; PERFORMANCE; APPROXIMATION;
D O I
10.1039/d0se01000f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The parameter extraction problem of solar photovoltaic (PV) models is a highly nonlinear multimodal optimization problem. In this paper, quadratic interpolation learning differential evolution (QILDE) is proposed to solve it. Differential evolution (DE) is a preeminent metaheuristic algorithm with good exploration. However, its exploitation is poor, resulting in low searching precision when applied to the problem. To overcome this deficiency, in QILDE, quadratic interpolation (QI) is embedded in the crossover operation of DE to construct a QI learning-backup crossover operation to enhance the performance of DE. The mutation scheme of DE is primarily responsible for exploring the new search space while QI is mainly in charge of exploiting the local solution space around the best individual, which, therefore, can achieve a good trade-off between exploitation and exploration. QILDE is applied to six different PV cases. The experimental results demonstrate that QI coupled with the mutation scheme DE/best/2 can obtain superior results in solving the parameter extraction problem of PV models. Besides, compared with other advanced algorithms, QILDE shows highly competitive performance in terms of solution quality, extraction accuracy, robust stability, convergence property, computational time, and statistical significance. In addition, the current-voltage characteristics provided by QILDE agree well with the measured data for different PV models under different operating conditions.
引用
收藏
页码:5595 / 5608
页数:14
相关论文
共 81 条
  • [1] Optimal extraction of solar cell parameters using pattern search
    AlHajri, M. F.
    El-Naggar, K. M.
    AlRashidi, M. R.
    Al-Othman, A. K.
    [J]. RENEWABLE ENERGY, 2012, 44 : 238 - 245
  • [2] Interpolated differential evolution for global optimisation problems
    Ali, Musrrat
    Pant, Millie
    Nagar, Atulya K.
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2010, 3 (03) : 298 - 315
  • [3] Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms
    Beigi, Amir Mohammad
    Maroosi, Ali
    [J]. SOLAR ENERGY, 2018, 171 : 435 - 446
  • [4] Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization
    Ben Messaoud, Ramzi
    [J]. ENERGY REPORTS, 2020, 6 (06) : 350 - 357
  • [5] Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm
    Biswas, Partha P.
    Suganthan, P. N.
    Wu, Guohua
    Amaratunga, Gehan A. J.
    [J]. RENEWABLE ENERGY, 2019, 132 : 425 - 438
  • [6] Parameter Identification for PV Modules Based on an Environment-Dependent Double-Diode Model
    Bradaschia, Fabricio
    Cavalcanti, Marcelo C.
    do Nascitnento Jr, Aguinaldo Jose
    da Silva, Emerson Alves
    de Souza Azevedo, Gustavo Medeiros
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (05): : 1388 - 1397
  • [7] Identification of Photovoltaic Source Models
    Chatterjee, Abir
    Keyhani, Ali
    Kapoor, Dhruv
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2011, 26 (03) : 883 - 889
  • [8] Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic driftse
    Chen, Huiling
    Jiao, Shan
    Wang, Mingjing
    Heidari, Ali Asghar
    Zhao, Xuehua
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 244
  • [9] Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters
    Chen, Xu
    Yu, Kunjie
    [J]. SOLAR ENERGY, 2019, 180 : 192 - 206
  • [10] Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization
    Chen, Xu
    Mei, Congli
    Xu, Bin
    Yu, Kunjie
    Huang, Xiuhui
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 145 : 250 - 263