Local multiplications on algebras

被引:14
作者
Hadwin, D [1 ]
Kerr, JW [1 ]
机构
[1] MICHIGAN STATE UNIV,DEPT MATH,E LANSING,MI 48823
关键词
D O I
10.1016/S0022-4049(96)00013-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unital algebra A over a commutative unital ring R is SLIP over R if every R-module endomorphism on A that leaves invariant every left ideal of A is left multiplication by an element of A. In this paper we provide characterizations of the SLIP property for classes of rings.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 16 条
[1]  
CRIST R, IN PRESS J FUNCT ANA
[2]  
DIXMIER J, 1977, C STAR ALGEBRAS
[3]  
DOUGLAS RG, 1976, INDIANA U MATH J, V225, P315
[4]   REFLEXIVE BIMODULES [J].
FULLER, KR ;
NICHOLSON, WK ;
WATTERS, JF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1989, 41 (04) :592-611
[5]   ALGEBRAS WHOSE PROJECTIVE-MODULES ARE REFLEXIVE [J].
FULLER, KR ;
NICHOLSON, WK ;
WATTERS, JF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (02) :135-150
[6]   UNIVERSALLY REFLEXIVE ALGEBRAS [J].
FULLER, KR ;
NICHOLSON, WK ;
WATTERS, JF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 157 :195-201
[7]   SCALAR-REFLEXIVE RINGS II [J].
HADWIN, D ;
KERR, JW .
JOURNAL OF ALGEBRA, 1989, 125 (02) :311-319
[8]   SCALAR-REFLEXIVE RINGS [J].
HADWIN, D ;
KERR, JW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (01) :1-8
[9]  
Hadwin D., 1983, Linear Multilinear Algebra, V14, P225, DOI [10.1080/03081088308817559, DOI 10.1080/03081088308817559]
[10]  
HADWIN D, 1987, J OPERAT THEOR, P233