THE SENETA-HEYDE SCALING FOR THE BRANCHING RANDOM WALK

被引:53
|
作者
Aidekon, Elie [1 ]
Shi, Zhan [1 ]
机构
[1] Univ Paris 06, Probabil Lab, UMR 7599, F-75252 Paris 05, France
关键词
Branching random walk; Seneta-Heyde norming; additive martingale; derivative martingale; GALTON-WATSON PROCESS; BROWNIAN-MOTION; MARTINGALE CONVERGENCE; MINIMAL POSITION; TRAVELING-WAVES; FIXED-POINTS; EQUATION; TREES; ABSORPTION; SURVIVAL;
D O I
10.1214/12-AOP809
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the boundary case (in the sense of Biggins and Kyprianou [Electron. J. Probab. 10 (2005) 609-631] in a one-dimensional supercritical branching random walk, and study the additive martingale (W-n). We prove that, upon the system's survival, n(1/2)W(n) converges in probability, but not almost surely, to a positive limit. The limit is identified as a constant multiple of the almost sure limit, discovered by Biggins and Kyprianou, of the derivative martingale.
引用
收藏
页码:959 / 993
页数:35
相关论文
共 50 条