THE SENETA-HEYDE SCALING FOR THE BRANCHING RANDOM WALK

被引:53
|
作者
Aidekon, Elie [1 ]
Shi, Zhan [1 ]
机构
[1] Univ Paris 06, Probabil Lab, UMR 7599, F-75252 Paris 05, France
关键词
Branching random walk; Seneta-Heyde norming; additive martingale; derivative martingale; GALTON-WATSON PROCESS; BROWNIAN-MOTION; MARTINGALE CONVERGENCE; MINIMAL POSITION; TRAVELING-WAVES; FIXED-POINTS; EQUATION; TREES; ABSORPTION; SURVIVAL;
D O I
10.1214/12-AOP809
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the boundary case (in the sense of Biggins and Kyprianou [Electron. J. Probab. 10 (2005) 609-631] in a one-dimensional supercritical branching random walk, and study the additive martingale (W-n). We prove that, upon the system's survival, n(1/2)W(n) converges in probability, but not almost surely, to a positive limit. The limit is identified as a constant multiple of the almost sure limit, discovered by Biggins and Kyprianou, of the derivative martingale.
引用
收藏
页码:959 / 993
页数:35
相关论文
共 50 条
  • [31] Branching random walk with selection at critical rate
    Mallein, Bastien
    BERNOULLI, 2017, 23 (03) : 1784 - 1821
  • [32] Competition on Zd driven by branching random walk
    Deijfen, Maria
    Vilkas, Timo
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [33] Large deviations for the maximum of a branching random walk
    Gantert, Nina
    Hoefelsauer, Thomas
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [34] Martingale convergence and the stopped branching random walk
    Kyprianou, AE
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (03) : 405 - 419
  • [35] Critical survival barrier for branching random walk
    Jingning Liu
    Mei Zhang
    Frontiers of Mathematics in China, 2019, 14 : 1259 - 1280
  • [36] CONVERGENCE IN LAW OF THE MINIMUM OF A BRANCHING RANDOM WALK
    Aidekon, Elie
    ANNALS OF PROBABILITY, 2013, 41 (3A) : 1362 - 1426
  • [37] Critical survival barrier for branching random walk
    Liu, Jingning
    Zhang, Mei
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (06) : 1259 - 1280
  • [38] The critical branching random walk in a random environment dies out
    Garet, Olivier
    Marchand, Regine
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 15
  • [39] Total progeny in killed branching random walk
    Addario-Berry, L.
    Broutin, N.
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (1-2) : 265 - 295
  • [40] ASYMPTOTIC PROPERTIES OF A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    Wang, Yuejiao
    Liu, Zaiming
    Liu, Quansheng
    Li, Yingqiu
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (05) : 1345 - 1362