THE SENETA-HEYDE SCALING FOR THE BRANCHING RANDOM WALK

被引:53
|
作者
Aidekon, Elie [1 ]
Shi, Zhan [1 ]
机构
[1] Univ Paris 06, Probabil Lab, UMR 7599, F-75252 Paris 05, France
关键词
Branching random walk; Seneta-Heyde norming; additive martingale; derivative martingale; GALTON-WATSON PROCESS; BROWNIAN-MOTION; MARTINGALE CONVERGENCE; MINIMAL POSITION; TRAVELING-WAVES; FIXED-POINTS; EQUATION; TREES; ABSORPTION; SURVIVAL;
D O I
10.1214/12-AOP809
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the boundary case (in the sense of Biggins and Kyprianou [Electron. J. Probab. 10 (2005) 609-631] in a one-dimensional supercritical branching random walk, and study the additive martingale (W-n). We prove that, upon the system's survival, n(1/2)W(n) converges in probability, but not almost surely, to a positive limit. The limit is identified as a constant multiple of the almost sure limit, discovered by Biggins and Kyprianou, of the derivative martingale.
引用
收藏
页码:959 / 993
页数:35
相关论文
共 50 条
  • [1] ON SENETA-HEYDE SCALING FOR A STABLE BRANCHING RANDOM WALK
    He, Hui
    Liu, Jingning
    Zhang, Mei
    ADVANCES IN APPLIED PROBABILITY, 2018, 50 (02) : 565 - 599
  • [2] Branching random walk: Seneta-Heyde norming
    Biggins, JD
    Kyprianou, AE
    TREES - WORKSHOP IN VERSAILLES, JUNE 14-16, 1995, 1996, 40 : 31 - 49
  • [3] Seneta-Heyde norming in the branching random walk
    Biggins, JD
    Kyprianou, AE
    ANNALS OF PROBABILITY, 1997, 25 (01) : 337 - 360
  • [4] A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions
    Boutaud, Pierre
    Maillard, Pascal
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [5] The Seneta-Heyde scaling for supercritical super-Brownian motion
    Hou, Haojie
    Ren, Yan-Xia
    Song, Renming
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1387 - 1417
  • [6] SCALING LIMIT OF THE PATH LEADING TO THE LEFTMOST PARTICLE IN A BRANCHING RANDOM WALK
    Chen, X.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2015, 59 (04) : 567 - 589
  • [7] The near-critical Gibbs measure of the branching random walk
    Pain, Michel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1622 - 1666
  • [8] A Branching Random Walk Seen from the Tip
    Brunet, Eric
    Derrida, Bernard
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (03) : 420 - 446
  • [9] Limit theorems for a branching random walk in a random or varying environment
    Huang, Chunmao
    Liu, Quansheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 172