THE SENETA-HEYDE SCALING FOR THE BRANCHING RANDOM WALK

被引:53
作者
Aidekon, Elie [1 ]
Shi, Zhan [1 ]
机构
[1] Univ Paris 06, Probabil Lab, UMR 7599, F-75252 Paris 05, France
关键词
Branching random walk; Seneta-Heyde norming; additive martingale; derivative martingale; GALTON-WATSON PROCESS; BROWNIAN-MOTION; MARTINGALE CONVERGENCE; MINIMAL POSITION; TRAVELING-WAVES; FIXED-POINTS; EQUATION; TREES; ABSORPTION; SURVIVAL;
D O I
10.1214/12-AOP809
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the boundary case (in the sense of Biggins and Kyprianou [Electron. J. Probab. 10 (2005) 609-631] in a one-dimensional supercritical branching random walk, and study the additive martingale (W-n). We prove that, upon the system's survival, n(1/2)W(n) converges in probability, but not almost surely, to a positive limit. The limit is identified as a constant multiple of the almost sure limit, discovered by Biggins and Kyprianou, of the derivative martingale.
引用
收藏
页码:959 / 993
页数:35
相关论文
共 34 条
[1]   MINIMA IN BRANCHING RANDOM WALKS [J].
Addario-Berry, Louigi ;
Reed, Bruce .
ANNALS OF PROBABILITY, 2009, 37 (03) :1044-1079
[2]   CONVERGENCE IN LAW OF THE MINIMUM OF A BRANCHING RANDOM WALK [J].
Aidekon, Elie .
ANNALS OF PROBABILITY, 2013, 41 (3A) :1362-1426
[3]   Survival of branching random walks with absorption [J].
Aidekon, Elie ;
Jaffuel, Bruno .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (09) :1901-1937
[4]   WEAK CONVERGENCE FOR THE MINIMAL POSITION IN A BRANCHING RANDOM WALK: A SIMPLE PROOF [J].
Aidekon, Elie ;
Shi, Zhan .
PERIODICA MATHEMATICA HUNGARICA, 2010, 61 (1-2) :43-54
[5]  
[Anonymous], THEORY PROBAB APPL
[6]  
[Anonymous], 1971, INTRO PROBABILITY TH
[7]   TRAVELING WAVES AND HOMOGENEOUS FRAGMENTATION [J].
Berestycki, J. ;
Harris, S. C. ;
Kyprianou, A. E. .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (05) :1749-1794
[8]   Discretization methods for homogeneous fragmentations [J].
Bertoin, J ;
Rouault, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :91-109
[9]  
BIGGINS J. D., 2010, London Math. Soc. Lecture Note Ser., V378, P113
[10]  
Biggins JD, 1997, ANN PROBAB, V25, P337