Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge

被引:65
作者
Hou, Guangmei [1 ]
Ren, Xiaohua [1 ]
Ma, Xiaoxin [1 ]
Zhang, Le [1 ]
Zhai, Wei [1 ]
Ai, Qing [1 ]
Xu, Xiaoyan [1 ]
Zhang, Lin [1 ]
Si, Pengchao [1 ]
Feng, Jinkui [1 ]
Ding, Fei [2 ]
Ci, Lijie [1 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Minist Educ, SDU & Rice Joint Ctr Carbon Nanomat,Key Lab Liqui, Jinan 250061, Shandong, Peoples R China
[2] Tianjin Inst Power Sources, Natl Key Lab Power Sources, Tianjin 300384, Peoples R China
关键词
Battery; Li dendrites; Free-standing; Lithiophilic matrix; Li metal anode; UNIFORM LITHIUM DEPOSITION; SOLID-ELECTROLYTE; IN-SITU; PERFORMANCE; IMPROVEMENT; NUCLEATION; REDUCTION; BATTERIES; MATRIX; GROWTH;
D O I
10.1016/j.jpowsour.2018.03.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal is considered as the ultimate anode material for high-energy Li battery systems. However, the commercial application of lithium anode is impeded by issues with safety and low coulombic efficiency induced by Li dendrite growth. Herein, a free-standing three-dimensional nitrogen-enriched graphitic carbon sponge with a high nitrogen content is proposed as a multifunctional current collect for Lithium accommodation. The abundant lithiophilic N-containing functional groups are served as preferred nucleation sites to guide a uniform Li deposition. In addition, the nitrogen-enriched graphitic carbon sponge with a high specific surface area can effectively reduce the local current density. As a result of the synergistic effect, the nitrogen-enriched graphitic carbon sponge electrode realizes a long-term stable cycling without dendrites formation. Notably, the as-obtained composite electrode can deliver an ultra-high specific capacity of similar to 3175 mA h g(-1). The nitrogen-enriched graphitic carbon sponge might provide innovative insights to design a superior matrix for dendrite-free Li anode.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 43 条
[1]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[2]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/NMAT2764, 10.1038/nmat2764]
[3]   In situ study of dendritic growth in lithium/PEO-salt/lithium cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Baudry, P ;
Lascaud, S .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1569-1574
[4]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[5]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[6]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[7]   Lithium metal stripping/plating mechanisms studies: A metallurgical approach [J].
Gireaud, L. ;
Grugeon, S. ;
Laruelle, S. ;
Yrieix, B. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (10) :1639-1649
[8]   Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode [J].
Guo, Jing ;
Wen, Zhaoyin ;
Wu, Meifen ;
Jin, Jun ;
Liu, Yu .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 51 :59-63
[9]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]
[10]  
Harry KJ, 2014, NAT MATER, V13, P69, DOI [10.1038/NMAT3793, 10.1038/nmat3793]