Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy

被引:48
|
作者
Ziv, Naomi [1 ]
Siegal, Mark L. [1 ]
Gresham, David [1 ]
机构
[1] NYU, Dept Biol, Ctr Genom & Syst Biol, New York, NY 10003 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
growth rate; lag duration; single cell; glucose deprivation; natural variation; Saccharomyces cerevisiae; clonal heterogeneity; respiro-fermentative growth; BACTERIAL-GROWTH; SACCHAROMYCES-CEREVISIAE; YEAST; GLUCOSE; VARIABILITY; MECHANISMS; MODELS; SIGNAL; NOISE; LIFE;
D O I
10.1093/molbev/mst138
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In microbial populations, growth initiation and proliferation rates are major components of fitness and therefore likely targets of selection. We used a high-throughput microscopy assay, which enables simultaneous analysis of tens of thousands of microcolonies, to determine the sources and extent of growth rate variation in the budding yeast (Saccharomyces cerevisiae) in different glucose environments. We find that cell growth rates are regulated by the extracellular concentration of glucose as proposed by Monod (1949), but that significant heterogeneity in growth rates is observed among genetically identical individuals within an environment. Yeast strains isolated from different geographic locations and habitats differ in their growth rate responses to different glucose concentrations. Inheritance patterns suggest that the genetic determinants of growth rates in different glucose concentrations are distinct. In addition, we identified genotypes that differ in the extent of variation in growth rate within an environment despite nearly identical mean growth rates, providing evidence that alleles controlling phenotypic variability segregate in yeast populations. We find that the time to reinitiation of growth (lag) is negatively correlated with growth rate, yet this relationship is strain-dependent. Between environments, the respirative activity of individual cells negatively correlates with glucose abundance and growth rate, but within an environment respirative activity and growth rate show a positive correlation, which we propose reflects differences in protein expression capacity. Our study quantifies the sources of genetic and nongenetic variation in cell growth rates in different glucose environments with unprecedented precision, facilitating their molecular genetic dissection.
引用
收藏
页码:2568 / 2578
页数:11
相关论文
共 50 条
  • [21] Analysis of High-throughput Microscopy Videos: Catching Up with Cell Dynamics
    Arbelle, A.
    Drayman, N.
    Bray, M.
    Alon, U.
    Carpenter, A.
    Raviv, T. Riklin
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 218 - 225
  • [22] High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation
    Abeler-Dorner, Lucie
    Laing, Adam G.
    Lorenc, Anna
    Ushakov, Dmitry S.
    Clare, Simon
    Speak, Anneliese O.
    Duque-Correa, Maria A.
    White, Jacqueline K.
    Ramirez-Solis, Ramiro
    Saran, Namita
    Bull, Katherine R.
    Moron, Belen
    Iwasaki, Jua
    Barton, Philippa R.
    Caetano, Susana
    Hng, Keng I.
    Cambridge, Emma
    Forman, Simon
    Crockford, Tanya L.
    Griffiths, Mark
    Kane, Leanne
    Harcourt, Katherine
    Brandt, Cordelia
    Notley, George
    Babalola, Kolawole O.
    Warren, Jonathan
    Mason, Jeremy C.
    Meeniga, Amrutha
    Karp, Natasha A.
    Melvin, David
    Cawthorne, Eleanor
    Weinrick, Brian
    Rahim, Albina
    Drissler, Sibyl
    Meskas, Justin
    Yue, Alice
    Lux, Markus
    Song-Zhao, George X.
    Chan, Anna
    Reviriego, Carmen Ballesteros
    Abeler, Johannes
    Wilson, Heather
    Przemska-Kosicka, Agnieszka
    Edmans, Matthew
    Strevens, Natasha
    Pasztorek, Markus
    Meehan, Terrence F.
    Powrie, Fiona
    Brinkman, Ryan
    Dougan, Gordon
    NATURE IMMUNOLOGY, 2020, 21 (01) : 86 - +
  • [23] Assessment of genetic variation for SAD and FAD genes in flax by high-throughput sequencing
    Kezimana, P.
    Dmitriev, A. A.
    Rozhmina, T. A.
    Novakovskiy, R. O.
    Romanova, E. V.
    Kudryavtseva, A. V.
    Melnikova, N. V.
    FEBS OPEN BIO, 2018, 8 : 466 - 466
  • [24] High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation
    Lucie Abeler-Dörner
    Adam G. Laing
    Anna Lorenc
    Dmitry S. Ushakov
    Simon Clare
    Anneliese O. Speak
    Maria A. Duque-Correa
    Jacqueline K. White
    Ramiro Ramirez-Solis
    Namita Saran
    Katherine R. Bull
    Belén Morón
    Jua Iwasaki
    Philippa R. Barton
    Susana Caetano
    Keng I. Hng
    Emma Cambridge
    Simon Forman
    Tanya L. Crockford
    Mark Griffiths
    Leanne Kane
    Katherine Harcourt
    Cordelia Brandt
    George Notley
    Kolawole O. Babalola
    Jonathan Warren
    Jeremy C. Mason
    Amrutha Meeniga
    Natasha A. Karp
    David Melvin
    Eleanor Cawthorne
    Brian Weinrick
    Albina Rahim
    Sibyl Drissler
    Justin Meskas
    Alice Yue
    Markus Lux
    George X. Song-Zhao
    Anna Chan
    Carmen Ballesteros Reviriego
    Johannes Abeler
    Heather Wilson
    Agnieszka Przemska-Kosicka
    Matthew Edmans
    Natasha Strevens
    Markus Pasztorek
    Terrence F. Meehan
    Fiona Powrie
    Ryan Brinkman
    Gordon Dougan
    Nature Immunology, 2020, 21 : 86 - 100
  • [25] High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation
    Bajhaiya, Amit K.
    Dean, Andrew P.
    Driver, Thomas
    Trivedi, Drupad K.
    Rattray, Nicholas J. W.
    Allwood, J. William
    Goodacre, Royston
    Pittman, Jon K.
    METABOLOMICS, 2016, 12 (01) : 1 - 14
  • [26] High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation
    Amit K. Bajhaiya
    Andrew P. Dean
    Thomas Driver
    Drupad K. Trivedi
    Nicholas J. W. Rattray
    J. William Allwood
    Royston Goodacre
    Jon K. Pittman
    Metabolomics, 2016, 12
  • [27] Detecting variation in starch granule size and morphology by high-throughput microscopy and flow cytometry
    Thieme, Mercedes
    Hochmuth, Anton
    Ilse, Theresa Elisabeth
    Cuesta-Seijo, Jose A.
    Stoma, Szymon
    Meier, Roger
    Norrelykke, Simon Flyvbjerg
    Pedas, Pai Rosager
    Braumann, Ilka
    Zeeman, Samuel C.
    CARBOHYDRATE POLYMERS, 2023, 299
  • [28] Genetic Determinants of Working Memory: A High-Throughput Voxel-Wise GWAS Approach
    DeAlbuquerque, Daniela
    Gregory, Michael
    Weinberger, Daniel
    Berman, Karen
    Callicott, Joseph
    BIOLOGICAL PSYCHIATRY, 2017, 81 (10) : S297 - S297
  • [29] High-throughput, multiplexed pushbroom hyperspectral microscopy
    Gehm, M. E.
    Kim, M. S.
    Fernandez, C.
    Brady, D. J.
    OPTICS EXPRESS, 2008, 16 (15) : 11032 - 11043
  • [30] HIGH-THROUGHPUT MICROSCOPY PROFILING OF LDLR VARIANTS
    Graca, R.
    Zimon, M.
    Alves, A. C.
    Pepperkok, R.
    Bourbon, M.
    ATHEROSCLEROSIS, 2020, 315 : E97 - E97