Backlund transformation of variable-coefficient Boiti-Leon-Manna-Pempinelli equation

被引:21
作者
Luo, Lin [1 ]
机构
[1] Shanghai Polytech Univ, Dept Math, Shanghai 201209, Peoples R China
基金
美国国家科学基金会;
关键词
Variable-coefficient BLMP equation; Lax pair; Backlund transformation; SYMMETRIES;
D O I
10.1016/j.aml.2019.02.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter, we discuss a variable-coefficient Boiti-Leon-Manna-Pempinelli equation. We present its soliton solution and derive its new bilinear Backlund transformation through Bell polynomial technique and bilinear method. Finally, we show the variable-coefficient Boiti-Leon-Manna-Pempinelli equation is completely integrable. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:94 / 98
页数:5
相关论文
共 12 条
[11]   Quasiperiodic solutions of the Kadomtsev-Petviashvili equation via the multidimensional Baker-Akhiezer function generated by the Broer-Kaup hierarchy [J].
Zhao, Peng ;
Fan, Engui ;
Luo, Lin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) :38-60
[12]   Symmetries and Their Lie Algebra of a Variable Coefficient Korteweg-de Vries Hierarchy [J].
Zhu, Xiaoying ;
Zhang, Dajun .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2016, 37 (04) :543-552