Backlund transformation of variable-coefficient Boiti-Leon-Manna-Pempinelli equation

被引:21
作者
Luo, Lin [1 ]
机构
[1] Shanghai Polytech Univ, Dept Math, Shanghai 201209, Peoples R China
基金
美国国家科学基金会;
关键词
Variable-coefficient BLMP equation; Lax pair; Backlund transformation; SYMMETRIES;
D O I
10.1016/j.aml.2019.02.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter, we discuss a variable-coefficient Boiti-Leon-Manna-Pempinelli equation. We present its soliton solution and derive its new bilinear Backlund transformation through Bell polynomial technique and bilinear method. Finally, we show the variable-coefficient Boiti-Leon-Manna-Pempinelli equation is completely integrable. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:94 / 98
页数:5
相关论文
共 12 条
[1]   The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials [J].
Fan, Engui .
PHYSICS LETTERS A, 2011, 375 (03) :493-497
[2]   A (2+1)-DIMENSIONAL GENERALIZATION OF THE AKNS SHALLOW-WATER WAVE-EQUATION [J].
GILSON, CR ;
NIMMO, JJC ;
WILLOX, R .
PHYSICS LETTERS A, 1993, 180 (4-5) :337-345
[3]   A note on the generalized symmetries of lattice hierarchies [J].
Gordoa, P. R. ;
Pickering, A. ;
Zhu, Z. N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (01) :378-381
[4]  
Hirota R., 2004, DIRECT METHODS SOLIT
[5]   RATIONAL SOLUTIONS OF A DIFFERENTIAL-DIFFERENCE KDV EQUATION, THE TODA EQUATION AND THE DISCRETE KDV EQUATION [J].
HU, XB ;
CLARKSON, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (17) :5009-5016
[6]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801
[7]   Invariant subspaces and conditional Lie-Backlund symmetries of inhomogeneous nonlinear diffusion equations [J].
Qu ChangZheng ;
Ji LiNa .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) :2187-2203
[8]   (2+1)-dimensional integrable lattice hierarchies related to discrete fourth-order nonisospectral problems [J].
Tam, Hon-Wah ;
Zhu, Zuo-Nong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (43) :13031-13045
[9]   Integrable properties of the general coupled nonlinear Schrodinger equations [J].
Wang, Deng-Shan ;
Zhang, Da-Jun ;
Yang, Jianke .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[10]   Long-time asymptotics for the Fokas-Lenells equation with decaying initial value problem: Without solitons [J].
Xu, Jian ;
Fan, Engui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (03) :1098-1148