ADAPTIVE REGULARIZATION AND DISCRETIZATION OF BANG-BANG OPTIMAL CONTROL PROBLEMS

被引:0
作者
Wachsmuth, Daniel [1 ]
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2013年 / 40卷
基金
奥地利科学基金会;
关键词
optimal control; bang-bang control; Tikhonov regularization; parameter choice rule; ILL-POSED PROBLEMS; TIKHONOV REGULARIZATION; PARAMETER CHOICE; CONVERGENCE; REFINEMENT; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, Tikhonov regularization of control-constrained optimal control problems is investigated. Typically the solutions of such problems exhibit a so-called bang-bang structure. We develop a parameter choice rule that adaptively selects the Tikhonov regularization parameter depending on a posteriori computable quantities. We prove that this choice leads to optimal convergence rates with respect to the discretization parameter. The article is complemented by numerical results.
引用
收藏
页码:249 / 267
页数:19
相关论文
共 26 条