A Graph-Based Approach to Interpreting Recurrent Neural Networks in Process Mining

被引:17
作者
Hanga, Khadijah Muzzammil [1 ]
Kovalchuk, Yevgeniya [1 ]
Gaber, Mohamed Medhat [1 ]
机构
[1] Birmingham City Univ, Sch Comp & Digital Technol, Birmingham B4 7XG, W Midlands, England
关键词
Unified modeling language; Machine learning; Task analysis; Recurrent neural networks; Predictive models; Process control; Directly-follows graph; explainable AI; long short term memory; process mining; recurrent neural network;
D O I
10.1109/ACCESS.2020.3025999
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Process mining is often used by organisations to audit their business processes and improve their services and customer relations. Indeed, process execution (or event) logs constantly generated through various information systems can be employed to derive valuable insights about business operations. Compared to traditional process mining techniques such as Petri nets and the Business Process Model and Notation (BPMN), deep learning methods such as Recurrent Neural Networks, and Long Short-Term Memory (LSTM) in particular, have proven to achieve a better performance in terms of accuracy and generalising ability when predicting next events in business processes. However, unlike the traditional network-based process mining techniques that can be used to visually present the entire discovered process, the existing deep learning-based methods for process mining lack a mechanism explaining how the predictions of next events are made. This study proposes a new approach to process mining by combining the benefits of the earlier, visually explainable graph-based methods and later, more accurate but unexplainable deep learning methods. According to the proposed approach, an LSTM model is employed first to find probabilities for each known event to appear in the process next. These probabilities are then used to generate a visually interpretable process model graph that represents the decision-making process of the LSTM model. The level of detail in this graph can be adjusted using a probability threshold, allowing to address a range of process mining tasks such as business process discovery and conformance checking. The advantages of the proposed approach over existing LSTM-based process mining methods in terms of both accuracy and explainability are demonstrated using real-world event logs.
引用
收藏
页码:172923 / 172938
页数:16
相关论文
共 33 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] [Anonymous], 2017, PADOVA MATH
  • [3] [Anonymous], 2015, MASS MANNH FEL
  • [4] [Anonymous], 2016, DEEP LEARNING
  • [5] Automated Discovery of Process Models from Event Logs: Review and Benchmark
    Augusto, Adriano
    Conforti, Raffaele
    Dumas, Marlon
    La Rosa, Marcello
    Maggi, Fabrizio Maria
    Marrella, Andrea
    Mecella, Massimo
    Soo, Allar
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (04) : 686 - 705
  • [6] Brownlee J., 2017, Deep learning for natural language processing
  • [7] Calkins H, 2017, J ARRYTHM, V33, P369, DOI 10.1016/j.joa.2017.08.001
  • [8] Learning Accurate LSTM Models of Business Processes
    Camargo, Manuel
    Dumas, Marlon
    Gonzalez-Rojas, Oscar
    [J]. BUSINESS PROCESS MANAGEMENT (BPM 2019), 2019, 11675 : 286 - 302
  • [9] An Eye into the Future: Leveraging A-priori Knowledge in Predictive Business Process Monitoring
    Di Francescomarino, Chiara
    Ghidini, Chiara
    Maggi, Fabrizio Maria
    Petrucci, Giulio
    Yeshchenko, Anton
    [J]. BUSINESS PROCESS MANAGEMENT, BPM 2017, 2017, 10445 : 252 - 268
  • [10] Dongen V., 2012, E U TECHNOLOGY BOUDE