On generalizations of separable polynomials over rings

被引:0
作者
Hamaguchi, Naoki [1 ]
Nakajima, Atsushi [1 ]
机构
[1] Nagano Natl Coll Technol, Dept Gen Educ, Nagano 3818550, Japan
关键词
Separable extension; separable polynomial; quasi-separable extension; derivation; discriminant; skew polynomial ring;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define that a ring extension SIR is weakly separable or weakly quasi-separable by using R-derivations of S, and give the necessary and sufficient condition that the extension R[X]/(X-n - aX - b) of a commutative ring R is weakly separable. Since the notions of weakly separability and weakly quasi-separability coincide for commutative ring extensions, we treat a quotient ring R[x; *] = R[X; *]/f(X)R[X; *] of a skew polynomial ring R[X; *], and show that if R is a commutative domain, then the extension R[x; *]/R is always weakly quasi-separable, where * is either a ring automorphism or a derivation of R. We also treat the weakly separability of R[x; *]/R and give various types of examples of these extensions.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 13 条
  • [1] DeMeyer F., 1971, LECT NOTE MATH, V181
  • [2] ELLIGER S, 1975, J REINE ANGEW MATH, V277, P155
  • [3] Ikehata S., 1983, MATH J OKAYAMA U, V25, P23
  • [4] Ikehata S., 1980, MATH J OKAYAMA U, V22, P115
  • [5] Ikehata S., 1999, MATH J OKAYAMA U, V41, P63
  • [6] Ikehata Shuichi, 1981, MATH J OKAYAMA U, V23, P19
  • [7] Kishimoto K., 1970, MATH J OKAYAMA U, V14, P159
  • [8] Quasi-separable extensions of noncommutative rings
    Komatsu, H
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (03) : 1011 - 1019
  • [9] Mcdonald BR, 1984, PURE APPL MATH, V87
  • [10] Nagahara T., 1976, MATH J OKAYAMA U, V19, P65