A DISCONTINUOUS-SKELETAL METHOD FOR ADVECTION-DIFFUSION-REACTION ON GENERAL MESHES

被引:58
作者
Di Pietro, Daniele A. [1 ]
Droniou, Jerome [2 ]
Ern, Alexandre [3 ]
机构
[1] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, F-34095 Montpellier, France
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[3] Univ Paris Est, CERMICS ENPC, F-77455 Marne La Vallee 2, France
关键词
advection-diffusion; Peclet robustness; hybrid high-order method; degenerate diffusion; error estimates; GALERKIN METHOD; ORDER;
D O I
10.1137/140993971
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We design and analyze an approximation method for advection-diffusion-reaction equations where the (generalized) degrees of freedom are polynomials of order k >= 0 at mesh faces. The method hinges on local discrete reconstruction operators for the diffusive and advective derivatives and a weak enforcement of boundary conditions. Fairly general meshes with polytopal and nonmatching cells are supported. Arbitrary polynomial orders can be considered, including the case k = 0, which is closely related to mimetic finite difference/mixed-hybrid finite volume methods. The error analysis covers the full range of Peclet numbers, including the delicate case of local degeneracy where diffusion vanishes on a strict subset of the domain. Computational costs remain moderate since the use of face unknowns leads to a compact stencil with reduced communications. Numerical results are presented.
引用
收藏
页码:2135 / 2157
页数:23
相关论文
共 24 条
[1]  
[Anonymous], MATH APPL
[2]  
Bassi F., 1997, 2 EUROPEAN C TURBOMA, P99
[3]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[4]   Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions [J].
Chainais-Hillairet, Claire ;
Droniou, Jerome .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) :61-85
[5]  
Chen YL, 2014, MATH COMPUT, V83, P87
[6]   A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR STEADY-STATE CONVECTION-DIFFUSION-REACTION PROBLEMS [J].
Cockburn, Bernardo ;
Dong, Bo ;
Guzman, Johnny ;
Restelli, Marco ;
Sacco, Riccardo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05) :3827-3846
[7]   A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems [J].
Da Veiga, Beirao ;
Droniou, Jerome ;
Manzini, Gianmarco .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) :1357-1401
[8]   Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection [J].
Di Pietro, Daniele A. ;
Ern, Alexandre ;
Guermond, Jean-Luc .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :805-831
[9]  
Di Pietro DA, 2015, MATH COMPUT, V84, P1
[10]   An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators [J].
Di Pietro, Daniele A. ;
Ern, Alexandre ;
Lemaire, Simon .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (04) :461-472