Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration

被引:104
作者
Vries, D. [1 ]
Bertelkamp, C. [1 ]
Kegel, F. Schoonenberg [2 ]
Hofs, B. [3 ]
Dusseldorp, J. [4 ]
Bruins, J. H. [5 ]
de Vet, W. [6 ]
van den Akker, B. [1 ]
机构
[1] KWR Watercycle Res Inst, POB 1072, NL-3430 BB Nieuwegein, Netherlands
[2] Vitens NV, POB 1205, NL-8001 BE Zwolle, Netherlands
[3] Evides Waterbedrijf, POB 4472, NL-3006 AL Rotterdam, Netherlands
[4] Oasen Drinking Water NV, POB 122, NL-2800 AC Gouda, Netherlands
[5] Waterlab Noord, Rijksstr Weg 85, NL-9756 AD Glimmen, Netherlands
[6] Water Supply Co Limburg WML, Limburglaan 25, NL-6229 GA Maastricht, Netherlands
关键词
Manganese; Iron; Model; Rapid sand filter; Adsorption; Oxidation; FERROUS IRON; OXIDATION; KINETICS; OXYGENATION; FE(II); GROUNDWATER; OXIDE; IONS;
D O I
10.1016/j.watres.2016.11.032
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A model has been developed that takes into account the main characteristics of (submerged) rapid filtration: the water quality parameters of the influent water, notably pH, iron(II) and manganese(II) concentrations, homogeneous oxidation in the supernatant layer, surface sorption and heterogeneous oxidation kinetics in the filter, and filter media adsorption characteristics. Simplifying assumptions are made to enable validation in practice, while maintaining the main mechanisms involved in iron(II) and manganese(II) removal. Adsorption isotherm data collected from different Dutch treatment sites show that Fe(II)/Mn(II) adsorption may vary substantially between them, but generally increases with higher pH. The model is sensitive to (experimentally) determined adsorption parameters and the heterogeneous oxidation rate. Model results coincide with experimental values when the heterogeneous rate constants are calibrated. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 38 条
[1]  
[Anonymous], 1998, J EUR COMMUN, VL330, P32
[2]  
Beek C.G.E.M., 2015, J WATER SUPPLY RES T, V65, P195
[3]  
Bruins J. H., 2016, THESIS
[4]   Manganese removal in groundwater treatment: Practice, problems and probable solutions [J].
Buamah, R. ;
Petrusevski, B. ;
de Ridder, D. ;
van de Wetering, T.S.C.M. ;
Shippers, J.C. .
Water Science and Technology: Water Supply, 2009, 9 (01) :89-98
[5]   Oxidation of adsorbed ferrous iron: kinetics and influence of process conditions [J].
Buamah, R. ;
Petrusevski, B. ;
Schippers, J. C. .
WATER SCIENCE AND TECHNOLOGY, 2009, 60 (09) :2353-2363
[6]   A modeling approach for iron concentration in sand filtration effluent using adaptive neuro-fuzzy model [J].
Cakmakci, Mehmet ;
Kinaci, Cumali ;
Bayramoglu, Mahmut ;
Yildirim, Yilmaz .
EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) :1369-1373
[7]  
Carlson KH, 1997, J AM WATER WORKS ASS, V89, P162
[8]  
David LParkhurst., 1999, USERS GUIDE PHREEQC
[9]   MANGANESE(II) OXIDATION-KINETICS ON METAL-OXIDE SURFACES [J].
DAVIES, SHR ;
MORGAN, JJ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1989, 129 (01) :63-77
[10]  
DAVISON W, 1983, GEOCHIM COSMOCHIM AC, V47, P67, DOI 10.1016/0016-7037(83)90091-1