On the Davenport-Heilbronn theorems and second order terms

被引:59
作者
Bhargava, Manjul [1 ]
Shankar, Arul [2 ]
Tsimerman, Jacob [3 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
CUBIC FIELDS; DENSITY; DISCRIMINANTS; COEFFICIENTS; RINGS;
D O I
10.1007/s00222-012-0433-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give simple proofs of the Davenport-Heilbronn theorems, which provide the main terms in the asymptotics for the number of cubic fields having bounded discriminant and for the number of 3-torsion elements in the class groups of quadratic fields having bounded discriminant. We also establish second main terms for these theorems, thus proving a conjecture of Roberts. Our arguments provide natural interpretations for the various constants appearing in these theorems in terms of local masses of cubic rings.
引用
收藏
页码:439 / 499
页数:61
相关论文
共 33 条
[1]  
[Anonymous], 1941, Progress in Mathematics
[2]   On the mean 3-rank of quadratic fields (vol 118, pg 1, 1999) [J].
Belabas, K .
COMPOSITIO MATHEMATICA, 2004, 140 (05) :1221-1221
[3]   The 3-rank of quadratic fields with a prime or quasi-prime discriminant [J].
Belabas, K ;
Fouvry, E .
DUKE MATHEMATICAL JOURNAL, 1999, 98 (02) :217-268
[4]   A fast algorithm to compute cubic fields [J].
Belabas, K .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :1213-1237
[5]   ERROR ESTIMATES FOR THE DAVENPORT-HEILBRONN THEOREMS [J].
Belabas, Karim ;
Bhargava, Manjul ;
Pomerance, Carl .
DUKE MATHEMATICAL JOURNAL, 2010, 153 (01) :173-210
[6]   The density of discriminants of quartic rings and fields [J].
Bhargava, M .
ANNALS OF MATHEMATICS, 2005, 162 (02) :1031-1063
[7]  
Bhargava M., PREPRINT
[8]  
Bhargava M., UNPUB
[9]  
Bhargava M, 2008, P AM MATH SOC, V136, P1581
[10]   The density of discriminants of quintic rings and fields [J].
Bhargava, Manjul .
ANNALS OF MATHEMATICS, 2010, 172 (03) :1559-1591