On the Weak Solvability Via Lagrange Multipliers for a Bingham Model

被引:6
作者
Cojocaru, Mariana Chivu [1 ]
Matei, Andaluzia [2 ]
机构
[1] Univ Craiova, Doctoral Sch Sci, AI Cuza 13, Craiova 200585, Romania
[2] Univ Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
基金
欧盟地平线“2020”;
关键词
Non-Newtonian fluid; Bingham constitutive law; mixed variational formulation; Lagrange multipliers; weak solution; fixed point; well-posedness; FLOW;
D O I
10.1007/s00009-020-01596-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stationary flow of an incompressible non-Newtonian fluid of Bingham type, mathematically described by means of a nonlinear boundary value problem governed by PDEs. The variational formulation which we propose is a mixed variational problem with Lagrange multipliers. First, we obtain existence, uniqueness, and stability results into an abstract framework. Then, we discuss the well-posedness of the mechanical model based on the auxiliary abstract results.
引用
收藏
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 2005, Bull Math Soc Sc Math Roumanie
[2]  
[Anonymous], 1993, Functional and Numerical Methods in Viscoplasticity
[3]  
[Anonymous], 1965, Journal of Applied Mathematics and Mechanics
[4]  
Bingham E.C., 1922, FLUIDITY PLASTICITY, VVolume 2
[5]  
Brezis H, 2010, SOBOLEV SPACES PARTI
[6]  
Carl S, 2007, SPRINGER MONOGR MATH, P1
[7]  
Cleja-Tigoiu S., 1985, THEORY PLASTICITY, P196
[8]   A FLOW-ANALYSIS OF A RIGID VISCO-PLASTIC BODY THROUGH AN ANNULAR ORIFICE [J].
CLEJATIGOIU, S ;
CRISTESCU, N .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1985, 27 (05) :291-301
[9]   On the numerical simulation of Bingham visco-plastic flow: Old and new results [J].
Dean, Edward J. ;
Glowinski, Roland ;
Guidoboni, Giovanna .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 142 (1-3) :36-62
[10]   Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions [J].
Dudek, Sylwia ;
Kalita, Piotr ;
Migorski, Stanislaw .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05) :2625-2646