Coding of Brownian Motion by Quantization of Exit Times

被引:0
|
作者
Poloczek, Felix [1 ]
Ciucu, Florin [1 ]
机构
[1] TU Berlin, T Labs, Berlin, Germany
来源
2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2012年
关键词
DIFFUSION-PROCESSES; COMPLEXITY; DISTORTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a concrete coding scheme for standard linear Brownian motion. The coding error under sup-norm decays like O(r(-1/2)) in the entropy r, and is thus rate-optimal. Moreover, the multiplicative constant lies below the theoretical maximum, and thus improves the known results. The scheme is based on a novel technique for quantizing the exit times of Brownian motion within a random error.
引用
收藏
页码:557 / 564
页数:8
相关论文
共 50 条
  • [1] High-resolution quantization and entropy coding for fractional Brownian motion
    Dereich, S.
    Scheutzow, M.
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 700 - 722
  • [2] Brownian motion simulation: a quantization approach
    Fort, Jean-Claude
    Salomon, Luis A.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (09) : 1807 - 1817
  • [3] OCCUPATION AND LOCAL TIMES FOR SKEW BROWNIAN MOTION WITH APPLICATIONS TO DISPERSION ACROSS AN INTERFACE
    Appuhamillage, Thilanka
    Bokil, Vrushali
    Thomann, Enrique
    Waymire, Edward
    Wood, Brian
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (01) : 183 - 214
  • [4] Brownian Brownian Motion-I
    Chernov, Nikolai
    Dolgopyat, Dmitry
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 198 (927) : VII - +
  • [5] Is a Brownian Motion Skew?
    Lejay, Antoine
    Mordecki, Ernesto
    Torres, Soledad
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (02) : 346 - 364
  • [6] Relativistic Brownian motion
    Dunkel, Joern
    Haenggi, Peter
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 471 (01): : 1 - 73
  • [7] High resolution quantization and entropy coding of jump processes
    Aurzada, Frank
    Dereich, Steffen
    Scheutzow, Michael
    Vormoor, Christian
    JOURNAL OF COMPLEXITY, 2009, 25 (02) : 163 - 187
  • [8] On the computability of a construction of Brownian motion
    Davie, George
    Fouche, Willem L.
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2013, 23 (06) : 1257 - 1265
  • [9] Probability of Brownian motion hitting an obstacle
    Knessl, C
    Keller, JB
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (02) : 729 - 745
  • [10] Kinetic Brownian motion on Riemannian manifolds
    Angst, Juergen
    Bailleul, Ismael
    Tardif, Camille
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20